X- 2.KINEMATICS

Exercise Solutions

Objective Questions

LEVEL 1

1. (a)
2. (d)
3. (a)

$$
\mathrm{G}=\mathrm{Fr}^{2} / \mathrm{m}^{2}=\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right] /\left[\mathrm{M}^{-2}\right]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]
$$

4. (a)

Let speed of the boat be 'v'
Distance travelled downstream $=(v+5) t$
Distance travelled upstream $=(\mathrm{v}-5) \mathrm{t}$
Here, $(v+5) t=3(v-5) t$
$\Rightarrow \mathrm{v}=10 \mathrm{~km} / \mathrm{h}$
5. (a)

Let total distance travelled be 'D'
Time taken to cover 60% of distance $=3 \mathrm{D} / 5 \mathrm{v}_{1}$
Time taken to cover rest 40% of distance $=2 \mathrm{D} / 5 \mathrm{v}_{2}$
Total time taken $=3 \mathrm{D} / 5 \mathrm{v}_{1}+2 \mathrm{D} / 5 \mathrm{v}_{2}$
Average Velocity $=$ Total Distance $/$ Total time $=\mathrm{D} /\left(3 \mathrm{D} / 5 \mathrm{v}_{1}+2 \mathrm{D} / 5 \mathrm{v}_{2}\right)=5 \mathrm{v}_{1} \mathrm{v}_{2} /\left(2 \mathrm{v}_{1}+3 \mathrm{v}_{2}\right)$
6. (b)

We know that $\mathrm{v}=\mathrm{u}+$ at
Here, $v=5 * 10^{3}+10^{3} \mathrm{t}$
Here, $v=2 \mathrm{u}=10 * 10^{3}=5 * 10^{3}+10^{3} \mathrm{t}$
$\mathrm{t}=5 \mathrm{sec}$
7. (a)
8. (d)

We know that, $\mathrm{s}_{\mathrm{n}}=\mathrm{u}+\mathrm{a}(\mathrm{n}-1 / 2)$
$\mathrm{s}_{5}=25+50 / 9^{*}(5-1 / 2)=50 \mathrm{~m}$
9. (a)

We know that, $v^{2}=u^{2}+2$ as
At maximum height i.e. $s=h$: final velocity $(v)=0$, initial velocity (u) is given as v, acceleration(a)
$=-\mathrm{g}$
$\Rightarrow \mathrm{v}=\sqrt{ }(2 \mathrm{gh})$
At above equation again to find s_{x} and s_{y}
At X, velocity $=v / 4 \Rightarrow(v / 4)^{2}=v^{2}+2(-g) s_{x}$
$\Rightarrow 15 / 16 \mathrm{v}^{2}=2 \mathrm{gs}_{\mathrm{x}} \Rightarrow \mathrm{s}_{\mathrm{x}}=15 \mathrm{~h} / 16$
At Y , velocity $=\mathrm{v} / 6 \Rightarrow(\mathrm{v} / 6)^{2}=\mathrm{v}^{2}+2(-\mathrm{g}) \mathrm{s}_{\mathrm{y}}$
$\Rightarrow 35 / 36 \mathrm{v}^{2}=2 \mathrm{gs}_{\mathrm{x}}=>\mathrm{s}_{\mathrm{y}}=35 \mathrm{~h} / 36$
$\mathrm{s}_{\mathrm{y}}-\mathrm{s}_{\mathrm{x}}=35 \mathrm{~h} / 36-15 \mathrm{~h} / 16=5 \mathrm{~h} / 144$
10. (c)

Let they meet after time ' t '
Distance travelled by first ball $(\mathrm{h})=1 / 2 \mathrm{gt}^{2}$ (Using second equation of motion) $=5 \mathrm{t}^{2}$
Distance travelled by second ball (s) $=25 \mathrm{t}-1 / 2 \mathrm{gt}^{2}=100-\mathrm{h}$
$\Rightarrow 25 \mathrm{t}-5 \mathrm{t}^{2}=100-5 \mathrm{t}^{2}=>\mathrm{t}=4 \mathrm{sec}$
11. (a)

Displacement in horizontal direction $=4 \mathrm{~m}$
Displacement in vertical direction $=3 \mathrm{~m}$
Net displacement $=\sqrt{ }\left(4^{2}+3^{2}\right)=5 \mathrm{~m}$
12. (a)

Total distance travelled $=\mathrm{v}_{1} \mathrm{t}_{1}+\mathrm{v}_{2} \mathrm{t}_{2}+$
Total time taken $=\mathrm{t}_{1}+\mathrm{t}_{2}$
Average velocity $=$ Total distance $/$ Total time $=\left(v_{1} t_{1}+v_{2} t_{2}\right) /\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
13. (a)

Since $v=u+a t$
Here, $\mathrm{u}=0 \Rightarrow \mathrm{a}=\mathrm{v} / \mathrm{t}=3.2 / 2=1.6 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}=\mathrm{at}=\mathrm{a} * 5=8 \mathrm{~m} / \mathrm{s}$
14. (c)

Using second equation, we get $\mathrm{h}=1 / 2 \mathrm{gT}^{2}$
At $\mathrm{t}=\mathrm{T} / 3, \mathrm{~s}=\left(1 / 2 \mathrm{gT}^{2}\right) / 9=\mathrm{h} / 9$
Distance from the ground $=\mathrm{h}-\mathrm{h} / 9=8 \mathrm{~h} / 9$
15. (a)

We know that $\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{gt}^{2}$
Here time (t) is independent of mass and only depends on s , u and g . Thus it is same for both the bodies.
16. (b)

Displacement $=$ Distance between point A and $B=\sqrt{ }\left(r^{2}+r^{2}\right)=\sqrt{ }(2 r)$
Total distance travelled $=3 / 4 *$ Circumference of circle $=3 \pi \mathrm{r} / 2$
17. (d)

Total distance travelled $=$ Area under graph $=100+80+80=260 \mathrm{~m}$
18. (b)

Acceleration $=$ slope between $\mathrm{t}=0$ and $\mathrm{t}=5 \mathrm{sec}=40 / 5=8 \mathrm{~m} / \mathrm{s}^{2}$
19. (a)

Retardation $=$ slope between $t=7$ and $t=11 \mathrm{sec}=-40 / 4=-10 \mathrm{~m} / \mathrm{s}^{2}$
20. (a)

Average velocity $=$ Total distance $/$ Total time $=260 / 11 \mathrm{~m} / \mathrm{s}$

LEVEL 2

1. (b)

Let time taken be ' t '
Distance covered in last second $=1 / 2 \mathrm{~g}(2 \mathrm{t}-1)\left(\mathrm{s}_{\mathrm{n}}=\mathrm{u}+\mathrm{a}(\mathrm{n}-1 / 2)\right)$
Distance covered in first 3 seconds $\Rightarrow \mathrm{s}=1 / 2 \mathrm{gt}^{2}=1 / 2 \mathrm{~g}(3)^{2}=9 \mathrm{~g} / 2$

Equating both, we get $\mathrm{t}=5 \mathrm{~s}$
2. (c)

Total time of flight $=2 \mathrm{u} / \mathrm{g}=20 \mathrm{~s}$
At $t=10 \mathrm{~s}$, the first arrow will be at its maximum height and second arrow will not be at its maximum height.
Speed of first at time $20 \mathrm{sec}=\mathrm{u}=98 \mathrm{~m} / \mathrm{s}$ in downward direction
Speed of second arrow at $t=20 \sec =>v=u+a t$
Here $u=98 \mathrm{~m} / \mathrm{s}, \mathrm{g}=-10 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{t}=15 \mathrm{sec}$ (Second arrow was released at $\mathrm{t}=5 \mathrm{~s}$)
$\Rightarrow \mathrm{v}=98-9.8 * 15=-49 \mathrm{~m} / \mathrm{s}=49 \mathrm{~m} / \mathrm{s}$ in downward direction
Ratio of speeds $=2: 1$
3. (c)

Distance travelled in first $10 \mathrm{sec}, \mathrm{s}=1 / 2 \mathrm{~g}(10)^{2}=500 \mathrm{~m}$ (Using second equation of motion)
Velocity acquired $=10 \mathrm{~g}=100 \mathrm{~m} / \mathrm{s}$ (Using first equation of motion)
Distance remaining $=1995 \mathrm{~m}$
Let speed acquired be v

$$
\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \Rightarrow \mathrm{v}^{2}=(100)^{2}-2(2.5) 1995=25 \Rightarrow \mathrm{v}=5 \mathrm{~m} / \mathrm{s}
$$

4. (a)

Let the time of acceleration and retardation be t_{1} and t_{2} respectively
Maximum speed (v) $=\mathrm{u}+\mathrm{at}_{1}=\alpha \mathrm{t}_{1}$
For car to stop, final velocity should be zero.
$\Rightarrow \mathrm{v}=\mathrm{u}+\mathrm{at}_{2}=\alpha \mathrm{t}_{1}-\beta \mathrm{t}_{2}=0 \Rightarrow \mathrm{t}_{2}=\alpha \mathrm{t}_{1} / \beta$
Also, $\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{t} \Rightarrow \mathrm{t}_{1}+\alpha \mathrm{t}_{1} / \beta=\mathrm{t}$
$\Rightarrow \mathrm{t}_{1}=\mathrm{t} \beta /(\alpha+\beta)$
\Rightarrow Maximum speed $=\alpha t_{1}=\operatorname{t\alpha } \beta /(\alpha+\beta)$
5. (d)

Vertical speed $=u \cos (60)=u / 2=10 \mathrm{~m} / \mathrm{s}$
Time taken to reach ground can be found by using second equation of motion
$\Rightarrow 40=-10 \mathrm{t}+1 / 2 \mathrm{~g} \mathrm{t}^{2}=-10 \mathrm{t}+5 \mathrm{t}^{2}$
$\Rightarrow \mathrm{t}^{2}-2 \mathrm{t}-8=0$
$\Rightarrow t=4 \mathrm{~s}$ (Negative value of t can be ignored)
6. (c)

Along the incline, acceleration due to gravity $=-\mathrm{g} \sin (30)=-\mathrm{g} / 2$
Using $v^{2}=u^{2}+2$ as at highest point along the incline i.e. $v=0 \Rightarrow u^{2}=40 \mathrm{~g}$
Using this in the formula for Range for projectile motion, we get $R=u^{2} \sin (60) / \mathrm{g}=20 \sqrt{3} \mathrm{~m}$
7. (d)

Let initial velocity of the body be ' u '
At the highest point, only horizontal component of the velocity will remain i.e. $u \cos 60=u / 2$
Initially, $K=1 / 2 \mathrm{mu}^{2}$
Kinetic energy at highest point $=1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{mu}^{2} / 4=\mathrm{K} / 4$
8. (b)

Range is proportional to square of $u=>$ If range is doubled, $u^{\prime}=u \sqrt{ } 2$
Time of flight is directly proportional to $u=>T^{\prime}=T \sqrt{ } 2$
9. (b)

At the highest point, Potential energy, $\mathrm{PE}=\mathrm{mgh}=\mathrm{mg}\left(\mathrm{u}^{2} \sin ^{2} \theta\right) / 2 \mathrm{~g}=1 / 2 \mathrm{mu}^{2} \sin ^{2} \theta$
Kinetic energy will be only due to horizontal component of velocity $\Rightarrow \mathrm{KE}=1 / 2 \mathrm{mu}^{2} \cos ^{2} \theta$
PE/KE $=\tan ^{2} \theta$
10. (d)

R is same for angle of projection θ and $90-\theta$
$\mathrm{h}_{1}=\mathrm{u}^{2} \sin ^{2} \theta / 2 \mathrm{~g}$ and $\mathrm{h}_{2}=\mathrm{u}^{2} \sin ^{2}(90-\theta) / 2 \mathrm{~g}=\mathrm{u}^{2} \cos ^{2} \theta / 2 \mathrm{~g}$
$\sqrt{ }\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right)=\mathrm{u}^{2} \sin \theta \cos \theta / 2 \mathrm{~g}=\mathrm{u}^{2} \sin 2 \theta / 4 \mathrm{~g}=\mathrm{R} / 4$
$R=4 \sqrt{ }\left(h_{1} h_{2}\right)$

Subjective Questions

1. Let the speed of bus be ' v '

Relative speed to bus in the direction of motion of cycle $=v-20$
Relative speed to bus in the direction opposite to motion of cycle $=v+20$
Distance between two buses $=\mathrm{vT}$
Thus, $\mathrm{vT} /(\mathrm{v}-20)=18 \mathrm{~min}=0.3 \mathrm{~h}$
And $\mathrm{vT} /(\mathrm{v}+20)=6 \mathrm{~min}=0.1 \mathrm{~h}$
Dividing the two equations and solving, we get $\mathrm{v}=40 \mathrm{~km} / \mathrm{h}$
And $\mathrm{T}=9 \mathrm{~min}$ i.e. in either direction, a bus leaves every 9 mins .
2. Let the speed of car be ' v '

Relative speed to bus w.r.t. car $=\mathrm{v}+30$
Time interval of meeting the two cars $=5 /(\mathrm{v}+30)=4$ mins $=1 / 15 \mathrm{~h}$. Thus, $\mathrm{v}=45 \mathrm{~km} / \mathrm{h}$
3. Let the speeds be v_{1} and v_{2}

In opposite direction, relative speed $=\mathrm{v}_{1}+\mathrm{v}_{2}$
Relative speed $=$ Distance/time $=4 \mathrm{~m} / \mathrm{s} \Rightarrow \mathrm{v}_{1}+\mathrm{v}_{2}=4$
In same direction, relative speed $=v_{1}-v_{2}$
Relative speed $=$ Distance $/$ time $=0.4 \mathrm{~m} / \mathrm{s} \Rightarrow \mathrm{v}_{1}-\mathrm{v}_{2}=0.4$
On solving the two equations, we get $\mathrm{v}_{1}=2.2 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}_{2}=1.8 \mathrm{~m} / \mathrm{s}$
4. Let the retardation offered by plank be ' $-a$ ' and its width be ' d '

We know that $v^{2}=u^{2}+2$ as
Here $v=u-u / 20=19 u / 20$
$(19 \mathrm{u} / 20)^{2}=\mathrm{u}^{2}-2 \mathrm{ad} \Rightarrow 2 \mathrm{ad}=39 \mathrm{u}^{2} / 400$
To completely, stop the bullet, final velocity must be 0
$0=u^{2}-2$ adn where n is the number of planks required
$\Rightarrow \mathrm{n}=\mathrm{u}^{2} / 2 \mathrm{ad}=400 / 39=10.2$
Number of planks is a natural number so least number of planks required is 11
5. Let the acceleration be ' a ' and $A C$ be $3 x$

Thus, $\mathrm{AB}=\mathrm{x}$ and $\mathrm{BC}=2 \mathrm{x}$
Now, using $v^{2}=u^{2}+2$ as between A and C
$\Rightarrow 25^{2}=5^{2}+2 \mathrm{a}(3 \mathrm{x}) \Rightarrow$ ax $=100$
Speed after reaching B $=>\mathrm{v}^{2}=5^{2}+2 \mathrm{ax}=25+200=225$
Speed at B, v=15 m/s
Using first equation of motion i.e. $v=u+$ at between $A B$, we get $15=5+a t_{1}$
$t_{1}=10 /$ a, where t_{1} is time taken to reach B from A
Now, using the equation again between B and C
$\mathrm{v}=\mathrm{u}+\mathrm{at}_{2} \Rightarrow 25=15+\mathrm{at}_{2} \Rightarrow \mathrm{t}_{2}=10 / \mathrm{a}$
Thus, $\mathrm{t}_{1}=\mathrm{t}_{2}$ and ratio is $1: 1$
6. Just when ball is about to hit the ground, its velocity, $v=-\sqrt{ }(2 \mathrm{gh})=-\sqrt{ }(20 \mathrm{~g})$ (using $v^{2}=u^{2}+2$ as)

Just after rebound, velocity is given by $\sqrt{ }(2 \mathrm{gh})=\sqrt{ }(5 \mathrm{~g})$ (Again using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as)

Change in velocity $=\sqrt{ }(5 \mathrm{~g})-(-\sqrt{ }(20 \mathrm{~g}))=\sqrt{ }(5 \mathrm{~g})+\sqrt{ }(20 \mathrm{~g})$
Acceleration $=$ Change in speed/Time $=(\sqrt{ }(5 \mathrm{~g})+\sqrt{ }(20 \mathrm{~g})) / 0.01$
$=100^{*}(\sqrt{ }(5 \mathrm{~g})+\sqrt{ }(20 \mathrm{~g}))=100 *(7+14)=2100 \mathrm{~N}$
7. To calculate time take by stone to reach the well, we use second equation of motion
$78.4=1 / 2 \mathrm{gt}^{2} \Rightarrow \mathrm{t}=4 \mathrm{~s}$
Time taken by sound $=0.23 \mathrm{~s}$
Speed of sound $=$ Distance $/$ Time $=78.4 / 0.23=340.87 \mathrm{~m} / \mathrm{s}$
8. Time taken to fall $50 \mathrm{~m} \Rightarrow 50=1 / 2$ gt 2 (Using second equation of motion)
$\Rightarrow \mathrm{t}=\sqrt{ } 10 \mathrm{~s}$
Velocity acquired $=\mathrm{gt}=10 \sqrt{ } 10 \mathrm{~m} / \mathrm{s}$ (Using first equation of motion)
Now we analyze the motion with parachute:
$\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as $\Rightarrow 9=1000-2(2) \mathrm{h} \Rightarrow \mathrm{h}=991 / 4=247.75 \mathrm{~m}$
Time taken $\mathrm{t}=(\mathrm{v}-\mathrm{u}) / \mathrm{a}=(3-10 \sqrt{ } 10) /(-2)=14.3 \mathrm{~s}$
(a) Total time spend in air $=14.3+\sqrt{ } 10=17.47 \mathrm{~s}$
(b) Height at which he bailed out $=\mathrm{h}=247.75 \mathrm{~m}$
9. Let the height be ' h ' and time after the first stone is thrown be ' t '

For first stone, $h=-30 t+1 / 2$ gt 2 (Using second equation of motion)
For second stone, $\mathrm{h}=1 / 2 \mathrm{~g}(\mathrm{t}-4)^{2}=1 / 2 \mathrm{gt}^{2}+8 \mathrm{~g}-4 \mathrm{gt}$
Comparing the two equations, we get, $\mathrm{t}=8 \mathrm{~s}$
Putting it in second equation, $\mathrm{h}=80 \mathrm{~m}$
10. Acceleration due to gravity on the planet $=19.6 \mathrm{~m} / \mathrm{s}^{2}=2 \mathrm{~g}$

Let the safe height be ' h '
The final velocity after falling h on this planet should be same as that on Earth after falling 2 m
Using third equation, $v^{2}=u^{2}+2$ as and putting $u=0$
2 as should be equal on both planets i.e. $2 \mathrm{~g}(2)=2(2 \mathrm{~g}) \mathrm{h} \Rightarrow \mathrm{h}=1 \mathrm{~m}$
11. Let height be ' h ' and time taken by first stone be ' t '

Using second equation, $\mathrm{h}=1 / 2 \mathrm{gt}^{2}$
For second stone, $\mathrm{h}-20=1 / 2 \mathrm{~g}(\mathrm{t}-1)^{2} \Rightarrow \mathrm{~h}=20+1 / 2 \mathrm{gt}^{2}+\mathrm{g} / 2-\mathrm{gt}=25+1 / 2 \mathrm{gt}^{2}-10 \mathrm{t}$
Comparing the two equations, we get $\mathrm{t}=2.5 \mathrm{~s}$
Putting value of t in equation 1 , we get $\mathrm{h}=31.25 \mathrm{~m}$
12. Initial speed, $\mathrm{u}=\sqrt{ } 2 \mathrm{gh}=20 \sqrt{5} \mathrm{~m} / \mathrm{s}$ (Using third equation of motion)

Let the stones meet after time ' t ' at distance ' h ' from ground
For first stone, $h=20 \sqrt{ } 5 t-1 / 2 \mathrm{gt}^{2}$ (Using second equation of motion)
For first stone, $\mathrm{h}=20 \sqrt{5}(\mathrm{t}-2)-1 / 2 \mathrm{~g}(\mathrm{t}-2)^{2}=20 \sqrt{5 t}-40 \sqrt{ } 5-1 / 2 \mathrm{gt}^{2}+2 \mathrm{gt}-2 \mathrm{~g}$
Comparing the two equations, we get $t=1+2 \sqrt{ } 5 \mathrm{~s}$
Putting it in equation 1, we get $\mathrm{h}=95 \mathrm{~m}$
13. For first ball, $200=-10 t+1 / 2$ gt 2 (Using second equation of motion)
$\mathrm{t}^{2}-2 \mathrm{t}-40=0 \Rightarrow \mathrm{t}=1+\sqrt{ } 41$
For second ball, $200=10 t+1 / 2$ gt $^{2}($
$\mathrm{t}^{2}+2 \mathrm{t}-40=0 \Rightarrow \mathrm{t}=-1+\sqrt{ } 41$
Time difference $=2 \mathrm{sec}$
14. $50=-15 t+1 / 2 \mathrm{gt}^{2}$ (Using second equation of motion)
$\mathrm{t}^{2}-3 \mathrm{t}-10=0 \Rightarrow \mathrm{t}=5 \mathrm{sec}$
15. (d)

Velocity is given by slope $(\tan \theta)$ of s-t graph
$\mathrm{V}_{\mathrm{A}}=\tan 30$ and $\mathrm{V}_{\mathrm{B}}=\tan 60$
$\mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{B}}=\tan 30 / \tan 60=1 / 3$
16. Let acceleration be 'a', constant speed be ' v ' and retardation be '-b'
$\mathrm{v}=\mathrm{u}+\mathrm{at} \Rightarrow>\mathrm{v}=100 \mathrm{a}$
Distance travelled while accelerating, $\mathrm{s}_{1}=1 / 2 \mathrm{a}(100)^{2}$ (Using second equation of motion)
Distance travelled at constant speed $s_{2}=v t=100 a * 300$
After deaccelerating, $0=100 a-b^{*} 150$ (Using first equation of motion)
$\Rightarrow \mathrm{b}=2 \mathrm{a} / 3$
Distance travelled while deaccelerating, $s_{3}=100 a * 150-1 / 2 b(150)^{2}$
$\mathrm{s}_{3}=100 \mathrm{a}^{*} 150-1 / 2^{*}(2 \mathrm{a} / 3) *(150)^{2}=50 \mathrm{a}^{*} 150$
It is given that $s_{1}+s_{2}+s_{3}=4250$
$5000 a+30000 a+7500 a=4250 \Rightarrow a=0.1 \mathrm{~m} / \mathrm{s}^{2}$
(a) Constant speed, $v=100 a=10 \mathrm{~m} / \mathrm{s}$
(b) Acceleration, $\mathrm{a}=0.1 \mathrm{~m} / \mathrm{s}^{2}$
(c) Deacceleration, $b=2 \mathrm{a} / 3=0.066 \mathrm{~m} / \mathrm{s}^{2}$
17. $\mathrm{V}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}$

Acceleration, $\mathrm{a}=\mathrm{v} / \mathrm{t}=20 / 30=0.66 \mathrm{~m} / \mathrm{s}^{2}$ (Using first equation of motion)
Distance travelled while accelerating, $s_{1}=1 / 2 \mathrm{a}(30)^{2}$ (Using second equation of motion)
$\Rightarrow \mathrm{s}_{1}=300 \mathrm{~m}$
We know that, $v^{2}=u^{2}+2$ as
After retardation, $v=0, u=20 \mathrm{~m} / \mathrm{s}$ and $\mathrm{s}=50 \mathrm{~m}$
Thus, retardation, $\mathrm{a}=-4 \mathrm{~m} / \mathrm{s}^{2}$
After deaccelerating, $0=20-4^{*} \mathrm{t}$ (Using first equation of motion)
Time taken in retarded motion, $\mathrm{t}=5 \mathrm{~s}$
Distance travelled at constant speed $=950-\mathrm{s}_{1}-50=600 \mathrm{~m}$
Time duration while speed is constant $=600 / 20=30 \mathrm{~s}$
Total time taken $=30+5+30=65 \mathrm{~s}$
18. Let maximum speed be ' v '
$\mathrm{v}=6 \mathrm{t}_{1}$ (Using first equation of motion)
After deaccelerating, $0=6 \mathrm{t}_{1}-4 *^{*}$ (Again using first equation of motion) $\Rightarrow \mathrm{t}_{2}=1.5 \mathrm{t}_{1}$
It's given that $\mathrm{t}_{1}+\mathrm{t}_{2}=6 \Rightarrow \mathrm{t}_{1}=2.4 \mathrm{~s}$
Thus, $v=6 * 2.4=14.4 \mathrm{~m} / \mathrm{s}$
While accelerating, $\mathrm{s}_{1}=\mathrm{v}^{2} / 2 \mathrm{a}=\mathrm{v}^{2} / 2(6)=17.28 \mathrm{~m}$ (Using third equation of motion)
Similarly, while deaccelerating, $s_{2}=v^{2} / 2(4)=25.92 \mathrm{~m}$
Net displacement $=17.28+25.92=43.2 \mathrm{~m}$
19. Let the time of acceleration and retardation be t_{1} and t_{2} respectively

Maximum speed (v) $=u+\mathrm{at}_{1}=\alpha \mathrm{t}_{1}$
For the car to stop, final velocity should be zero.
$\Rightarrow v=u+a t_{2}=\alpha t_{1}-\beta t_{2}=0 \Rightarrow t_{2}=\alpha t_{1} / \beta$
Also, $\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{t} \Rightarrow \mathrm{t}_{1}+\alpha \mathrm{t}_{1} / \beta=\mathrm{t}$
$\Rightarrow \mathrm{t}_{1}=\mathrm{t} \beta /(\alpha+\beta)$
\Rightarrow Maximum speed, $v=\alpha t_{1}=\alpha \beta t /(\alpha+\beta)$
Displacement while accelerating, $s_{1}=v^{2} / 2 \alpha=\alpha \beta^{2} \mathrm{t}^{2} / 2(\alpha+\beta)^{2}$ (Using third equation of motion)
Similarly, while deaccelerating, $s_{2}=v^{2} / 2 \beta=\alpha^{2} \beta t^{2} / 2(\alpha+\beta)^{2}$
Total displacement $=s_{1}+s_{2}=\alpha \beta t^{2} / 2(\alpha+\beta)$
20. (a) $\mathrm{T}=2 * 39.2 * \sin 60 / 9.8=6.93 \mathrm{~s}$
$\mathrm{H}=(39.2)^{2} * \sin ^{2} 60 / 2 \mathrm{~g}=58.8 \mathrm{~m}$

$$
\mathrm{R}=(39.2)^{2} * \sin 120 / \mathrm{g}=135.79 \mathrm{~m}
$$

(b) Max Range $=u^{2} / \mathrm{g}(\theta=45)$

Height $=u^{2} * \sin ^{2} 45 / 2 g=u^{2} / 4 g=R / 4$
(c) $\quad \mathrm{v}^{2} * \sin (2 \theta) / \mathrm{g}=2 * \mathrm{v}^{2} * \sin ^{2} \theta / 2 \mathrm{~g}=>\sin (2 \theta)=\sin ^{2} \theta \Rightarrow \tan \theta=2$
$\Rightarrow \sin \theta=2 / \sqrt{ } 5$ and $\cos \theta=1 / \sqrt{ } 5$
$\Rightarrow \sin (2 \theta)=4 / 5$
$\Rightarrow \mathrm{R}=4 \mathrm{u}^{2} / 5 \mathrm{~g}$
(d) $u^{2} * \sin (2 \theta) / g=u^{2} * \sin ^{2} \theta / 2 g \Rightarrow \sin (2 \theta)=\sin ^{2} \theta / 2 \Rightarrow \tan \theta=4 \Rightarrow \theta=\tan ^{-}(4)$
(e) $\mathrm{H}=\mathrm{R} / 4=100 \mathrm{~m}$
(f) Time of flight is doubled $\Rightarrow \mathrm{u}$ is doubled

Range is proportional to $u^{2} \Rightarrow$ Range becomes four times

