SOLUTIONS

LEVEL1

1. Divisibility rule of 11 is that add up the alternates starting from the last then subtract the remaining.
$2+6+1-4-5-3=-3$
So, 3 is the smallest number that should be added.
2. To check 48 divisibility, the number must be divisible by $8 \& 6$.

For 8 , last 3 digits must be easily divisible by 8 . So, 25 y must be multiple of 8 .It means y must be equal to 6 (256 is a multiple of 8)
For 6 , the number must be divisible by $2 \& 3$.
Last digit is even because $\mathrm{y}=6$, so number is divisible by 2 .
Sum of all digits must be divisible by 3 \& sum=5+6+6+8+x+2+5+6=38+x
For least value , x must be equal to 1
$(x+y)=1+6=7$
3.

$$
\begin{aligned}
& N=16+2 k(2 k+2)(2 k+4)(2 k+6)=16[1+k(k+1)(k+2)(k+3)], \\
& =\left[4\left(k^{2}+3 k+1\right)\right]^{2}
\end{aligned}
$$

hence, N is a perfect square, and is clearly divisible by 16 .
When k is odd, $k^{2}+3 k+1$ is odd, hence 16 is the highest factor containing 2 by which N is divisible (thus eliminating 32 and 64)

You may verify this for $k=1$ - The first four of these $2,4,6,8$ product with 16 added gives 400 which is neither divisible by 32 nor 64
4. Prime numbers greater than 5 can be represent in the form of $6 \mathrm{k} \pm 1$.

So, cube of $(6 k+1) \&(6 k-1)$ leave the remainder of $1 \& 5$, while cubes of $2,3, \& 5$ leave the remainder of $2,3 \& 5$ respectively.
sum $=1+5+2+3=11$
5. Two numbers 698 and 450 when divide by certain divisor leave remainder of 9 and 8 respectively.
H.CF[(698-9),(450-8)]=H.C.F(689,442)=13
6.

68488 and 67516 on dividing with N leaves same remainder.
N is a three digit number.
$68488-67516=972$. On dividing by 972,68488 and 67516 leaves the same remainder.

Now, three digit factors of 972 is $486,324,243,162,108$.

So there are six values of N.
7.

In case of division by 7 and 5 the remainder is divisor-4
$\operatorname{LCM}(5,7)=35$
So this number $=\mathrm{LCM}-4=35-4=31$
Thus number $\mathrm{N}=35^{*} \mathrm{p}-4 \ldots \ldots \ldots \ldots$.........(1) (p is any integer)
Now the number on division by 6 leaves remainder 5
Thus $N=6 q+5$
From (1) and (2)
$6 q+5=35 p-4$
$35 p=6 q+9$
$35 p=3 *(2 q+3)$
OR p*35=3* $(2 q+3)$
On comparison we get that
35 is not divisible by 3 So $p=3$ and $2 q+3=35$
So $q=32 / 2=16$
From(2) using $\mathrm{q}=16$ we get
$N=6 * 16+5=101$
101 is the smallest 3 digit required number
8. Incorrect options
number=L.C.M $(9,11) \mathrm{K}-4=99 \mathrm{k}-4$
Smallest 4 digit number would be at $k=1089-4=1085$
9. number=I.c. $m(7,9,11) k+5=693 k+5$

Largest number will be at $\mathrm{k}=14$
10. Number of soldiers $=$ L.C.M $(8,15,20) K+1=120 K+1$

Number of soldiers=L.C.M $(9,13) z+4=117 z+4$
At $k=1, z=1$, number of soldiers $=121$
11. dimensions $=870 \times 638=58^{2} \times 15 \times 11$

Least number of tiles will be $15 * 11=165$ (of dimensions,58x58)
12.

Four blocks of chocolates of weights $6 \frac{1}{8} \mathrm{~kg}, 10 \frac{1}{2} \mathrm{~kg}, 8 \frac{3}{4} \mathrm{~kg}$ and $3 \frac{15}{16} \mathrm{~kg}$
H.C.F $\left[\frac{49}{8}, \frac{21}{2}, \frac{35}{4}, \frac{63}{16}\right]=\frac{7}{16}$

Least number of pieces which can be distributed $=\frac{\frac{49}{8}+\frac{21}{2}+\frac{35}{4}+\frac{63}{16}}{7 / 16}=67$
13. H.C.F=6, Product=4320

Let the number be 6a, 6 b ($\mathrm{a} \& \mathrm{~b}$ are coprimes)
L.C.M=6ab
H.C.F * L.C.M=4320
$36 a b=4320, a b=120$
$(a, b)=(3,40),(5,24),(8,15)$,
Only 3 pairs will satisfy above conditions
14. H.C.F=7, L.C.M=196

Let the numbers be $7 \mathrm{a} \& 7 \mathrm{~b}$ ($\mathrm{a}>\mathrm{b}$)
L.C.M=7ab=196,
$a b=28 \ldots . .(1)$
difference=7(a-b)=21
$\Rightarrow a-b=3 \ldots$.(2)
From (1) \& (2)
$a=7, b=4$
Largest number=7a=49
15. $x=0.7 \underline{54}$

Multiply both sides by 10
$\Rightarrow 10 x=7 . \underline{54} \ldots$. (1)
Multiply both sides by 100
$\Rightarrow 1000 x=754.54 \ldots$. (2)
Subtract equation 1 from 2
$990 x=747$
$\mathrm{x}=\frac{747}{990}$
$\mathrm{x}=0.69 \underline{2}$
Multiply both sides by 100
$\Rightarrow 100 x=69 . \underline{2} \ldots$ (3)
Multiply both sides by 10
$\Rightarrow 1000 x=692.2 \ldots$
Subtract 3 equation from 4
900x=623
$x=\frac{623}{900}$
$0.7 \overline{54}+0.69 \overline{2}^{\prime}$
$=\frac{747}{990}+\frac{623}{900}=\frac{14323}{9900}$
16. INCORRECT Q
17.

$$
\begin{aligned}
& 5+6 \times \frac{1}{3} \text { of } 9-\left\{4-\frac{5}{8}+2 \frac{7}{8}+\frac{3}{4}\right\} \\
= & 5+6 \times \frac{1}{3} \times 9-\left\{4-\frac{5}{8}+\frac{23}{8}+\frac{3}{4}\right\} \\
= & 5+18-\{7\} \\
= & 16
\end{aligned}
$$

18. $75^{3}-50^{3}-25^{3}=5^{3} k$

In all cubes, 5 comes.So, the resultant must be the multiple of 125 .
For 125 divisibility, last three digits must be divisible by 125.
Only,281250 satisfy this.
19. Square root of $123456 \ldots$.......... 321 is always equal to11....atimes

Square root of 12345654321 is 111111

Level 2

1. On dividing 546789 by 7 , we get 5 as remainder.So, 5 is the number must be subtracted
2. 64A3B6C is divisible by 360 .

So, C must be 0 .
360 is also divisible by 8. So, check divisiblity test on 64A3B60.
$B 60$ must be divisible by $8, B=1,3,5,7,9$
The number is divisible by $3 \& 9$ both.
sum $=19+A+B$
$B=1, A=7$
$B=3, A=5$
$B=5, A=3$
$B=7, A=1$
$B=9, A=8$
3. $X^{4}+2 \mathrm{X}^{3}+3 \mathrm{X}^{2}+4 \mathrm{X}+36$

X must be a factor of 36.36 has nine factors
4. abcde-acdbe=10000a+1000b+100c+10d+e-10000a-1000c-100d-10b-e
$=990 b-900 c-90 d=90(11 b-10 c-d)$
5. All prime numbers greater than 5 can be represent in form of $6 \mathrm{k} \pm 1$

Squares of $2,3 \& 5$ leaves remainders of $4,3 \& 1$ respectively, while others in form of $6 k \pm 1$ when squaring leaves 1 as remainder.
sum $=1+4+3=8$
6. Error in q
7. H.C.F[(971-3),(852-5)]=121
8. NUMBER=L.C.M(5,6,7)k-3=210k-3...(1)

NUMBER=47z-6
On comparing 1 \& 2
210k-3=47z-6
$210 \mathrm{k}+3=47 \mathrm{z}$
k=2 satisfy
Number=210x2-3=417
9. BY chinese remainder theorem
number=9x+6, numbers are 6,15,24,33,42,51,60,69,78,,,
number=7y+5, numbers are $5,12,19,26,33,40,47$, ,,
number=I.c.m(7,9)m+least common(=33)
$=63 \mathrm{~m}+33$
$63 m+33<1000$
$63 \mathrm{~m}<967$
$\mathrm{m}<15.34$
$\mathrm{m}=15$
number=63x15+33=978
10. Take the L.C.M of the times which will be the time at which all will meet at the starting point.
L.C.M(360,200,360,450)=1800
11. p, q and r be distinct positive integers that are odd
a) $p q^{2} r^{2}=(o d d)(o d d)^{2}(o d d)^{2}=o d d$
b) $(p+q)^{2} r^{2}=(\text { odd }+o d d)^{2}(o d d)^{2}=$ evenXodd $=$ even
c) $(p-q+r)^{2}(q+r)=(\text { even }+ \text { odd })^{2}($ odd + odd $)=$ even
d) $(2 n-1)(2 n+1)(2 n+3)=\left(4 n^{2}-1\right)(2 n+3)=8 n^{3}+12 n^{2}-2 n-3$
$\mathrm{n}=1$, remainder=3
$\mathrm{n}=2$, remainder=1
So, not sure about the remainder
12. Product of first three prime numbers $=2431=11^{*} 13^{*} 17$

Product of last three prime numbers $=4199=13^{*} 17 * 19$
Largest $=19$
13. Sum of n natural numbers $=n(n+1) / 2$
14. $x^{2}-y^{2}=255$

$$
(x-y)(x+y)=5 * 51
$$

$x-y=5, x+y=51$

$$
\begin{gathered}
\Rightarrow x=28, y=23 \\
(x-y)(x+y)=15 * 17 \\
\Rightarrow x=16, y=1
\end{gathered}
$$

$x-y=15, x+y=17$

$$
(x-y)(x+y)=1 * 255
$$

$\Rightarrow x-y=1, x+y=255$

$$
\Rightarrow x=128, y=127
$$

$$
(x-y)(x+y)=3 * 85
$$

$\Rightarrow x-y=3, \mathrm{x}+\mathrm{y}=85$
$\Rightarrow x=44, y=41$
15. N is the least integer which leaves remainder of $5,6,7$ when divided by the divisors $7,8,9$ Respectively.
$N=L . C . M(7,8,9) k-2=504 k-2$
Least=502
502 leaves 9 as remainder when divided by 17.

