ŕACE IIT I MEDICAL | MHT-CET

ANDHERI / BORIVALI / DADAR / THANE / POWAI / CHEMBUR / NERUL / KHARGHAR
IIT - JEE: 2023
AITS - 1
DATE: 19/03/23
ADVANCED

ANSWERS KEY

PAPER - I

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	A	B	C	C	D	AB	AC	ABCD	BC
Que.	11	12	13	14	15	16	17	18	$\mathbf{1 9}$	20
Ans.	ABD	ABC	AB	BD	8	1	2	4	$\mathbf{2}$	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	C	B	A	C	D	A	ABCD	CD	AC	AD
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	AD	AD	CD	BC	4	8	4	5	3	4
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	C	A	C	B	C	C	CD	ABCD	ABCD	BC
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	AD	AC	ABD	BD	4	5	2	9	9	7

PAPER - II

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	AC	AD	ABC	AB	ABC	AD	ABC	ACD	D	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	C	D	8	6	8	9	2	4	2	5
Que.	21	22	$\mathbf{2 3}$	24	25	26	27	28	29	30
Ans.	AB	BC	ABD	BC	AD	CD	BCD	ABC	C	D
Que.	31	32	33	34	35	36	37	$\mathbf{3 8}$	39	40
Ans.	B	B	6	4	2	2	3	$\mathbf{7}$	3	2
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	ABCD	BCD	CD	ACD	AC	AB	ABC	AB	D	C
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	D	C	1	7	3	2	6	4	6	9

Note: Detailed solution to this test is available on Tomorrow after 05.00 pm on our website.:www.iitianspace.com

PHYSICS PAPER - I (SOLUTION)

1. (D)

Apply Snell's law and use geometry.
2. (A)

Use, $v=v \lambda$, and $v=\sqrt{\frac{\gamma R T}{m}}$.
3. (B)

As we know that

$$
\overrightarrow{\mathrm{F}}=\oint \operatorname{Id} \vec{\ell} \times \overrightarrow{\mathrm{B}} \text { and } \overrightarrow{\mathrm{T}}=\overrightarrow{\mathrm{M}} \times \overrightarrow{\mathrm{B}} .
$$

4. (C)

The condition for no slipping here will be
$R \omega-v_{2}=v_{1}$
\therefore Point of contact remains at rest.
In terms of displacements.

$\therefore \quad \theta=\frac{S_{1}+S_{2}}{R}=\frac{100+75}{150}=\frac{7}{6} \mathrm{rad}$.
5. (C)
6. (D)

Circuit is a balanced wheat stone bridge
$\therefore \quad \mathrm{R}$ of the whole circuit $=1+4=5 \Omega$
Induced cnf BLV $=i \mathrm{R}$

$$
v=\frac{\mathrm{iR}}{\mathrm{BL}}=\frac{.1 \times 5}{2 \times .1}=2.5 \mathrm{~m} / \mathrm{s}
$$

7. (AB)
8. (AC)

Using,

$$
\mathrm{V}_{\mathrm{A}}-\mathrm{L}_{1} \frac{\mathrm{di}}{\mathrm{dt}}+\varepsilon-\mathrm{L}_{2} \frac{\mathrm{di}}{\mathrm{dt}}=\mathrm{V}_{\mathrm{B}} .
$$

9. (ABCD)

Use the relation $\vec{v}_{\text {any particle }}=\vec{v}_{a}+\vec{\omega} \times \overrightarrow{\mathrm{r}}$. For ground frame, while w.r.t. center mass frame body will only doing rotation.
10. (BC)
$\frac{1}{100-x}=\frac{1}{-x}=\frac{1}{21}$
$\Rightarrow \quad \mathrm{x}$, the distance of object from the lens $=30 \mathrm{~cm}, 70 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{70}{-30}, \mathrm{~m}_{2}=\frac{30}{-70} \\
& \therefore \quad\left|\mathrm{~m}_{1}-\mathrm{m}_{2}\right|=\frac{40}{21}
\end{aligned}
$$

11. (ABD)
12. (ABC)
13. (AB)
14. (BD)
15. (8)
16. (1)

Let the net force on this particle is zero at height h. Then weight = upthrust [at h]

$\Rightarrow \quad \frac{4}{3} \pi r^{3} \cdot g \cdot \frac{5}{2} \rho_{0}=\frac{4}{3} \pi r^{3} g \rho_{0}\left[4-\frac{3 \mathrm{~h}}{\mathrm{~h}_{0}}\right]$.
$\Rightarrow \quad \frac{3 \mathrm{~h}}{\mathrm{~h}_{0}} \quad=4-\frac{5}{2}=\frac{3}{2}$
$\Rightarrow \quad h \quad=\frac{\mathrm{h}_{0}}{2}$
\therefore At $h=\frac{\mathrm{h}_{0}}{2}$ is the equilibrium position the particle has a speed in downward direction due to which it will move downward. Let at a further depth x-from $\frac{\mathrm{h}_{0}}{2}$,

$$
\begin{aligned}
& !\times\left.\right|_{\prod_{2}} ^{\prod_{n_{d} / 2}^{2}-x} \\
& \mathrm{~F}_{\text {net }}=\text { up thrust }- \text { weight }=\frac{4}{3} \pi r^{3} g \rho_{0}\left[4-\frac{3\left(\frac{\mathrm{~h}_{0}}{2}-\mathrm{x}\right)}{\mathrm{h}_{0}}\right]-\frac{4}{3} \pi r^{3} g \frac{5}{2} \rho_{0} \\
& =\frac{4}{3} \pi r^{3} \rho_{0} g\left[4-\frac{3}{2}+\frac{3 \mathrm{x}}{\mathrm{~h}_{0}}-\frac{5}{2}\right]=\frac{4 \pi \mathrm{r}^{3} \rho_{0} \mathrm{~g}}{\mathrm{~h}_{0}} \cdot \mathrm{x} \\
& \therefore \quad \mathrm{~F} \quad=\frac{4 \pi \mathrm{r}^{3} \rho_{0} \mathrm{~g}}{\mathrm{~h}_{0}} \cdot \mathrm{x}
\end{aligned}
$$

\therefore Since the net force on the particle and displacement of ball from its mean position are oppositely directed so the particle executes SHM about its mean position i.e. $\left[\mathrm{h}=\frac{\mathrm{h}_{0}}{2}\right]$

$$
\begin{array}{ll}
\therefore & \mathrm{F}=m a=-\frac{4 \pi \mathrm{r}^{3} \rho_{0} \mathrm{~g}}{\mathrm{~h}_{0}} \mathrm{x} \\
\Rightarrow & \frac{4}{3} \pi r^{3} \frac{5}{2} \rho_{0} a=-\frac{4 \pi \mathrm{r}^{3} \rho_{0} \mathrm{~g}}{\mathrm{~h}_{0}} \mathrm{x} \\
\Rightarrow & a=-\frac{6 \mathrm{~g}}{5 \mathrm{~h}_{0}} \cdot x=-\left[\frac{12}{\mathrm{~h}_{0}}\right] \cdot x=-w^{2} x \\
& {\left[\text { where } \omega=\sqrt{\frac{12}{\mathrm{~h}_{0}}}=\sqrt{\frac{12}{\frac{12}{\pi^{2}}}}=\pi\right]}
\end{array}
$$

\therefore time taken by the particle to reach the bottom is

$$
t=\frac{\mathrm{T}}{2}=\frac{1}{2} \frac{2 \pi}{\omega}=\frac{\pi}{\omega}=\frac{\pi}{\pi}=1
$$

17. (2)
18. (4)

Let q_{1} and q_{2} be charge on two capacitors after time t
$\therefore \quad q_{1}+q_{2}=2 \mathrm{Q}$ and $\frac{\mathrm{q}_{1}}{\mathrm{c}_{1}}=\frac{\mathrm{q}_{2}}{\mathrm{c}_{2}}$
Where $\mathrm{C}_{1} \quad=\frac{\varepsilon_{0} \mathrm{~A}}{\left(\mathrm{~d}_{0}+\mathrm{vt}\right)} \quad$ and $\quad \mathrm{C}_{2} \quad=\frac{\varepsilon_{0} \mathrm{~A}}{\left(\mathrm{~d}_{0}-\mathrm{vt}\right)}$
$\therefore \frac{\mathrm{q}_{1}}{\mathrm{q}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{\mathrm{d}_{0}-\mathrm{vt}}{\mathrm{d}_{0}+\mathrm{vt}} \Rightarrow q_{1}=\mathrm{Q}\left[\frac{\mathrm{d}_{0}-\mathrm{vt}}{\mathrm{d}_{0}}\right]$ and $q_{2}=\mathrm{Q}\left[\frac{\mathrm{d}_{0}+\mathrm{vt}}{\mathrm{d}_{0}}\right]$
The reduction in charge in the first capacitor is equal to the increase the charge on the second capacitor. The current is

$$
\mathrm{I}=-\frac{\Delta \mathrm{q}_{1}}{\Delta \mathrm{t}} \quad=\frac{\Delta \mathrm{q}_{2}}{\Delta \mathrm{t}}=\frac{\mathrm{Q}}{\mathrm{~d}_{0}}=\frac{6 \times 10^{-3}}{1.5 \times 10^{-3}}=4 \mathrm{~A}
$$

19. (3)

Let v_{0} be the velocity required to send a particle to infinity from point A .

$$
\begin{aligned}
\frac{1}{2} \mathrm{mv}_{0}^{2} & -\frac{\mathrm{GMm}}{2 \mathrm{R}}=0 \\
\Rightarrow \quad v_{0} & =\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}
\end{aligned}
$$

\therefore velocity of projection at A

$$
v_{p} \quad=\frac{1}{\sqrt{2}} v_{0}=\sqrt{\frac{\mathrm{GM}}{2 \mathrm{R}}}
$$

Let v^{\prime} be the velocity at the highest point and r be its distance from the center of the planet. Using Conservation of angular momentum.

$$
\begin{array}{rlr}
& m v_{p} \quad 2 \mathrm{R} \cos 30^{\circ}=m v^{\prime} r \\
\Rightarrow & v^{\prime}=\frac{\sqrt{3} \mathrm{R}}{\mathrm{r}} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}=\sqrt{\frac{3 \mathrm{GMR}}{2 \mathrm{r}^{2}}} \tag{1}
\end{array}
$$

From conservation on the mechanical energy at A and B
$-\frac{\mathrm{GMm}}{2 \mathrm{R}}+\frac{1}{2} \mathrm{~m} \cdot \frac{\mathrm{GM}}{2 \mathrm{R}}=-\frac{\mathrm{GMm}}{\mathrm{r}}+\frac{1}{2} m v^{\prime 2}$
replacing the value of v^{\prime} from (1) in the above eq ${ }^{n}$.
$-\frac{\mathrm{GM}}{4 \mathrm{R}}=-\frac{\mathrm{GM}}{\mathrm{r}}+\frac{1}{2} \times \frac{3}{2} \frac{\mathrm{GMR}}{\mathrm{r}^{2}} \quad \Rightarrow \quad r^{2}-4 \mathrm{Rr}+3 \mathrm{R}^{2}=0$
$\Rightarrow \quad(r-3 \mathrm{R})(r-\mathrm{R})=0 \quad \Rightarrow \quad r=\mathrm{R}, r=3 \mathrm{R}$
20. (3)
$\mathrm{I}_{0}=4 \mathrm{I}_{0} \cos ^{2} \frac{\phi}{2}$
$\Rightarrow \quad \cos \frac{\phi}{2}=\frac{1}{2}$
$\Rightarrow \quad \phi \quad=\frac{\pi}{3}$
\therefore Path difference of the two beams producing intensity I_{0} on the screen is $\frac{\lambda}{3}$.
Optical path difference between two beams meeting on the screen
$=\left\{\left(\mathrm{S}_{2} \mathrm{P}-\mathrm{t}+\frac{4}{3} \mathrm{t}\right)-\left(\mathrm{S}_{1} \mathrm{P}-\mathrm{t}+\frac{3}{2} \mathrm{t}\right)\right\}$
$=\left(\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}\right)+t\left(\frac{4}{3}-\frac{3}{2}\right)=d \sin \theta-\frac{\mathrm{t}}{6}$.
$\therefore \quad \frac{\mathrm{dY}}{\mathrm{D}}-\frac{\mathrm{t}}{6} \quad=\frac{\lambda}{3}$
$\Rightarrow \quad \frac{\mathrm{dY}}{\mathrm{D}} \quad=\frac{\lambda}{3}+\frac{\mathrm{t}}{6}$
$\Rightarrow \quad Y \quad=\frac{\mathrm{D}}{\mathrm{d}}\left[\frac{\lambda}{3}+\frac{\mathrm{t}}{6}\right]$
$=\frac{1}{10^{-4}}\left(\frac{6000 \times 10^{-10}}{3}+\frac{.6 \times 10^{-6}}{6}\right)$
$=\frac{1}{10^{-4}} \times 3 \times 10^{-7}=3 \times 10^{-3} \mathrm{~m}$
$\therefore \quad Y \quad=3 \mathrm{~mm}$

CHEMISTRY PAPER - I (SOLUTION)

21. (C)

In (B) Nitrogen can undergo resonance in the ring.
In (A) Nitrogen lone pairs is some what delocalized towards the adjacent $>\mathrm{C}=\mathrm{O}$ and (C) \& (D) have electron withdrawing groups attached.
22. (B)

$$
\mathrm{H}_{2} \mathrm{O}(1) \longleftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

On adding inert at constant P, V increases, so equilibrium shifts in the direction where no. of gases moles are more
23. (A)

Background count from dead $\mathrm{CO}_{2}=\frac{9000}{900}=10 \mathrm{count} / \mathrm{min}$.
Count from contemporary wood $\frac{22000}{200}=110$ counts $/ \mathrm{min}$.
\therefore Actual count $=(110-10)=100$
Count from test sample $24000 \div 400=60$ count per min.
\therefore Actual counting rate $=(60-10)=50$ count $/ \mathrm{min}$.
$\mathrm{t}=\frac{2.303}{\lambda} \log \frac{\text { activity of contemporary wood }}{\text { activity of test sample }}$
$\mathrm{t}=\frac{2.303}{.693} \times 5570 \log \frac{100}{50}=\frac{2.303}{.693} \times 5570 \times .3010$
$t=5570$ years
24. (C)

The order of ligand strength in the spectrochemical series $\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NO}_{2}^{-}$. A strong ligand causes a larger degree of splitting resulting in high value of E (energy). Therefore corresponding low value of $\lambda\left[E=\frac{h c}{\lambda}\right]$
25. (D)

Protonation occurs on the OH which can produce more stable carbocation and while rearrangement phenyl has higher migratory aptitude over o-substituted phenyl.
26. (A)

Esters $\mathrm{R}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{O}-\mathrm{R}^{\prime}$ where R^{\prime} can form a stable carbocation undergoes alkyl-oxygen cleavage.

27. (ABCD)
28. (CD)
29. (AC)

30. (AD)
31. (AD)

$$
\begin{aligned}
& \underset{\mathrm{sp}^{8}}{\mathrm{~S}_{2} \mathrm{O}_{8}^{2-}}, \underset{\mathrm{sp}^{3}}{\mathrm{SO}_{4}^{2-}} \underset{\mathrm{sp}^{3}}{\mathrm{~S}_{2} \mathrm{O}^{2-}}, \underset{\mathrm{sp}^{2}}{\mathrm{NO}_{3}^{-}} \\
& \underset{\substack{p^{3}}}{\mathrm{I}_{3}^{+}}, \underset{\substack{ \\
\mathrm{sp}^{3} \mathrm{~d}^{5}}}{\mathrm{BrF}_{5}} \quad \underset{\substack{\mathrm{sp}^{3} \mathrm{~d}^{2}}}{\mathrm{XeF}_{4}}, \underset{\mathrm{sp}^{3} \mathrm{~d}^{2}}{\mathrm{SF}_{6}}
\end{aligned}
$$

32. (AD)

Rate of chemisorption increases with increases in temperature and heat of physisorption is less than heat of chemisorption
33. (CD)

$$
\begin{aligned}
& \mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\underset{\text { (A) }}{\mathrm{NH}_{3}} \\
& \mathrm{NH}_{3}+\mathrm{CuO} \longrightarrow \mathrm{Cu}+\underset{\text { (C) }}{\mathrm{N}_{2}}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Ammonium salts containing anions which are oxidizing in nature then on heating ammonium salts $\mathrm{N}_{2(\mathrm{~g})}$ is liberated instead of $\mathrm{NH}_{3} \therefore$ (b)
34. (BC)
35. (4)
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
$12 \mathrm{~mL} \quad 6 \mathrm{~mL}$
$2 \mathrm{CO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}$
$12 \mathrm{~mL} \quad 6 \mathrm{~mL}$
Total oxygen available $=80 \times \frac{20}{100}=16 \mathrm{~mL}$
O_{2} used in above reactions $=6+6=12 \mathrm{~mL}$
$\therefore \quad$ Unused oxygen $=16-12=4 \mathrm{~mL}$.
36. (8)
$\frac{E_{500}}{R \times 500}=\frac{E_{400}}{R \times 400}$ from corresponding Arrhenius equations.
$\therefore \quad \mathrm{E}_{500}=\mathrm{E}_{400} \times \frac{5}{4}$
Given $\mathrm{E}_{500}=\mathrm{E}_{400}+2$
$\therefore \quad \mathrm{E}_{400}+2=\mathrm{E}_{400} \times 1.25$
$\therefore \quad \mathrm{E}_{400}=8 \mathrm{KJ} \mathrm{mol}^{-1}$.
37. (4)
$\mathrm{V}=\left(5 \times 10^{-8}\right)^{3}=1.25 \times 10^{-23}$ ce
$\mathrm{m}=\mathrm{dV}=4 \times 1.25 \times 10^{-22}=5 \times 10^{-22} \mathrm{~g}$
Mass of one molecule of $\mathrm{FeO}=\frac{72 \mathrm{~g}-\mathrm{mol}^{-1}}{6.022 \times 10^{23} \mathrm{~mol}^{-1}}=1.195 \times 10^{-22} \mathrm{~g}$
\therefore Number of FeO per unit cell $=\frac{5 \times 10^{-22}}{1.195 \times 10^{-22}} \approx 4$.
38. (5)
$\underset{1}{\mathrm{~N}_{2} \mathrm{O}_{4}} \rightleftharpoons \underset{0}{\rightleftharpoons} \mathrm{NO}_{2}$
$1-\alpha \quad 2 \alpha$
$\therefore \quad$ Total moles at equilibrium $=1+\alpha$
Now $\frac{1+\alpha}{1}=\frac{\mathrm{M}_{\mathrm{N}_{2} \mathrm{O}_{4}}}{\mathrm{M}_{\text {mix }}}$
where $\mathrm{M}_{\text {mix }}=\frac{\rho \mathrm{RT}}{\mathrm{P}}=\frac{1.84 \times 0.082 \times 348}{1}=52.50$
$\therefore \quad 1+\alpha=\frac{92}{52.50}=0.75$
$\therefore \quad \mathrm{K}_{\mathrm{P}}=\frac{4 \alpha^{2}}{1-\alpha^{2}} \times \mathrm{P}=\frac{4 \times(0.75)^{2}}{1-(0.75)^{2}} \approx 5$.
39. (3)
$4 \mathrm{FeCr}_{2} \mathrm{O}_{4}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \longrightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}$.
Chromium changes from +3 to +6 oxidation state. So change in oxidation state is of 3 .
40. (4)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}=2 \rho_{\mathrm{B}} \quad 2 \mathrm{~m}_{\mathrm{A}}=\mathrm{m}_{\mathrm{B}} \therefore \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=? \\
& \mathrm{P}_{\mathrm{A}}=\frac{\rho_{\mathrm{A}} \mathrm{RT}}{\mathrm{M}_{\mathrm{A}}} \\
& \mathrm{P}_{\mathrm{B}}=\frac{\rho_{\mathrm{B}} \mathrm{RT}}{\mathrm{~m}_{\mathrm{B}}} \\
& \therefore \quad \frac{\mathrm{p}_{\mathrm{A}}}{\mathrm{p}_{\mathrm{B}}}=\frac{\rho_{\mathrm{A}} \mathrm{~m}_{\mathrm{B}}}{\rho_{\mathrm{B}} \mathrm{~m}_{\mathrm{A}}}=\frac{2 \rho_{\mathrm{B}} \times 2 \mathrm{~m}_{\mathrm{A}}}{\rho_{\mathrm{B}} \mathrm{~m}_{\mathrm{A}}}=4 .
\end{aligned}
$$

MATHS PAPER - I (SOLUTION)

41. (C)

$$
\begin{aligned}
& |z|^{2}=4 \Rightarrow z \cdot \bar{z}=4 \Rightarrow \frac{\bar{z}}{4}=\frac{1}{z}, \text { let complex number } \omega=\mathrm{z}+\frac{1}{\mathrm{z}} \Rightarrow \omega=\mathrm{z}+\frac{\overline{\mathrm{z}}}{4} \\
& 4 \omega=4 \mathrm{z}+\overline{\mathrm{z}} \Rightarrow 4(\mathrm{u}+\mathrm{iv})=4(\mathrm{x}+\mathrm{iy})+(\mathrm{x}-\mathrm{iy}) \\
& \Rightarrow \quad 4 \mathrm{u}+4 \mathrm{vi}=5 \mathrm{x}+3 \mathrm{iy} \Rightarrow \frac{\mathrm{u}^{2}}{25}+\frac{\mathrm{v}^{2}}{9}=1
\end{aligned}
$$

42. (A)

Positive difference of any two of them is at least 3
$\Rightarrow \quad$ there will be at least 2 numbers between any two of them
Let $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ be the chosen numbers.
Put two zeroes in between each pair as shown

$$
\begin{aligned}
& \uparrow^{\mathrm{c}_{1} 00} \uparrow^{\mathrm{c}_{2} 00} \uparrow^{\mathrm{C}_{3} 00} \uparrow^{\mathrm{c}_{4} 00} \uparrow^{\mathrm{c}_{5}} \uparrow \\
& \begin{array}{lllllll}
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \mathrm{x}_{6}
\end{array}
\end{aligned}
$$

Let there be $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ numbers in the vacant spaces as shown.
Then, $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=7$ with $x_{i} \geq 0$
No. of ways $={ }^{7+6-1} C_{6-1}={ }^{12} C_{5}$
43. (C)
$\mathrm{f}(1)=1, \mathrm{f}(2)=\left(1+\frac{1}{2}\right), \mathrm{f}(3)=\left(1+\frac{1}{2}+\frac{1}{3}\right), \ldots, \mathrm{f}(\mathrm{n})=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{\mathrm{n}}$

$$
\begin{array}{rlrl}
& & \sum_{i=1}^{n} f(i) & =\left\{n+\frac{n-1}{2}+\frac{n-2}{3}+\ldots .+\frac{1}{n}\right\} \\
\Rightarrow & \sum_{i=1}^{n} f(i) & =\left\{n\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4} \ldots \frac{n-1}{n}\right)\right\} \\
\Rightarrow & & \sum_{i=1}^{n} f(i) & =\left\{n f(n)-\left(1-\frac{1}{2}+1-\frac{1}{3} \ldots . .+1-\frac{1}{n}\right)\right\}
\end{array}
$$

44. (B)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{{ }^{n} C_{k}}{n^{k}} \cdot \int_{0}^{1} x^{n+2} d x=\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{{ }^{n} C_{k}}{n^{k}} x^{n} \cdot x^{2} d x \\
& \quad=\lim _{n \rightarrow \infty} \int_{0}^{1} x^{2}\left\{\sum_{k=0}^{n}{ }^{n} C_{k}\left(\frac{x}{n}\right)^{k}\right\} d x \\
& \Rightarrow \quad \lim _{n \rightarrow \infty} \int_{0}^{1} x^{2} \cdot e^{x} d x \\
& \Rightarrow \quad \text { apply by part } \Rightarrow e-2
\end{aligned}
$$

45. (C)
$\int \frac{2 \sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^{2}}}{\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^{2}}-\frac{1}{2}\left(\sqrt{\frac{1}{x}}-\sqrt{\mathrm{x}}\right)} d x=\int \frac{2 \frac{\sqrt{(1+\mathrm{x})^{2}}}{2 \sqrt{\mathrm{x}}}}{\frac{\sqrt{(1+\mathrm{x})^{2}}}{2 \sqrt{\mathrm{x}}}-\frac{1}{2}\left(\frac{1-\mathrm{x}}{\sqrt{\mathrm{x}}}\right)} \mathrm{dx}=\int \frac{2(1+\mathrm{x})}{1+\mathrm{x}-1+\mathrm{x}} \mathrm{dx}$
$\int d x+\int \frac{d x}{x}$
$\Rightarrow \quad \mathrm{x}+\log \mathrm{x}$
46. (C)

If $x \in I$ then $[x]=x$ and $\{x+r\}=0$ for any $r \in I$. Thus $f(x)=x$. If $x \in R \sim I$ then $[x]=$ integral part of x and $\{x+r\}=\{x\}$ for any $r=1,2, \ldots$ 1000. Thus $f(x)=[x]+\{x\}=x$
47. (CD)

$$
\begin{aligned}
& x^{2}\left(\int_{0}^{\pi / 2}(2 \sin t+3 \cos t) d t\right)=2 \\
\Rightarrow & 5 x^{2}=2 \Rightarrow x= \pm \sqrt{\frac{2}{5}}
\end{aligned}
$$

48. (ABCD)

$$
\begin{aligned}
& \quad \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \\
& \Rightarrow \quad \frac{1}{2} \cdot \frac{1}{5}=\frac{1}{10} \\
& \text { and } \mathrm{P}(\mathrm{~A} / \mathrm{B})=\mathrm{P}(\mathrm{~A})=\frac{1}{2} \\
& \text { Now } \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \\
& \qquad \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\frac{1}{2}+\frac{1}{5}-\frac{1}{10}=\frac{3}{5} \text { and } \mathrm{P}(\mathrm{~A} / \mathrm{A} \cup \mathrm{~B})=\frac{\mathrm{P}(\mathrm{~A} \cap(\mathrm{~A} \cup \mathrm{~B}))}{\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})}=\frac{\mathrm{P}(\mathrm{~A})}{\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})} \\
& \qquad \frac{1 / 2}{3 / 5}=\frac{5}{6} \text { and } \mathrm{P}(\mathrm{~A} \cap \mathrm{~B} / \overline{\mathrm{A}} \cup \overline{\mathrm{~B}})=0
\end{aligned}
$$

49. (ABCD)

$$
\begin{aligned}
& I=\int_{-\alpha}^{\alpha} e^{x} d x+\int_{-\alpha}^{\alpha} \cos x \ln \left(x+\sqrt{1+x^{2}}\right) d x \\
& =e^{\alpha}-e^{-\alpha}>\frac{3}{2}
\end{aligned}
$$

50. (BC)
51. (AD)
52. (AC)
53. (ABD)
54. (BD)
$f(t)=t^{3}-t^{2}+t+1$
$\mathrm{f}^{\prime}(\mathrm{t})>0$
$\therefore \max .\{f(t): 0 \leq t \leq x\}=f(x)$
55. (4)
56. (5)
57. (2)
58. (9)

Let n be a non-negative integer such that
$\left[\frac{x}{44}\right]=\left[\frac{x}{45}\right]=n$
Then $\left[\frac{x}{44}\right]=n \Leftrightarrow 44 n \leq x<44(n+1)$ and

$$
\left[\frac{x}{45}\right]=n \Leftrightarrow 45 n \leq x<45(n+1)
$$

So, $\left[\frac{x}{44}\right]=\left[\frac{x}{45}\right]=n$

$$
\Leftrightarrow 45 n \leq x<44(n+1)
$$

$$
\Leftrightarrow 44 n+n \leq x<44 n+44
$$

This the case if and only if $n<44$ and then x can assume exactly $44-n$ different values.
Therefore the number of non-negative integer values of x is

$$
\begin{aligned}
& (44-0)+(44-1)+\ldots+(44-43) \\
& =44+43+\ldots+1=\frac{1}{2}(44 \times 45)=990
\end{aligned}
$$

59. (9)
60. (7)

Let BD, CE and AF be of lengths $\mathrm{y}-1$, y and $\mathrm{y}+1$ respectively. Since the lengths of the tangent, from an external point to the circle are equal we get $\mathrm{BF}=\mathrm{BD}=\mathrm{y}-1, \mathrm{CD}=\mathrm{CE}=\mathrm{y}$ and $\mathrm{AE}=\mathrm{AF}=\mathrm{y}+1$
$\Rightarrow \mathrm{BC}=2 \mathrm{y}-1, \mathrm{CA}=2 \mathrm{y}+1$ and $\mathrm{AB}=2 \mathrm{y}$,
$\Rightarrow \mathrm{s}=3 \mathrm{y}$
Now $\tan \frac{C}{2}=\frac{r}{y}$ and $\tan \frac{B}{2}=\frac{r}{y-1}$

So that $\tan \left(\frac{B}{2}+\frac{C}{2}\right)=\frac{\frac{r}{y-1}+\frac{r}{y}}{1-\frac{r^{2}}{y(y-1)}}$
$\Rightarrow \quad \cot \frac{A}{2}=\frac{2 x y-r}{y^{2}-y-r^{2}} \Rightarrow \quad \frac{y+1}{r}=\frac{2 r y-r}{y^{2}-y-r^{2}}$
$\Rightarrow \quad y^{3}-3 r^{2} y-y=0$
$\Rightarrow \quad y^{3}-48 y-y=0 \quad[$ as $\mathrm{r}=4$ (given)]
$\Rightarrow \quad y=0$ or $y^{2}=49 \quad \Rightarrow \quad y=7$

PHYSICS PAPER - II (SOLUTION)

1. (AC)

The equation of standing wave given as,

$$
y=2 A \sin k x \cos \omega t
$$

$$
\begin{aligned}
d K & =\frac{1}{2} d m\left(\frac{d y}{d t}\right)^{2} \\
& =\frac{1}{2} \mu d x\left(4 A^{2} \omega^{2} \sin ^{2} k x \sin ^{2} \omega t\right)
\end{aligned}
$$

Integrate it from $x=0$ to $x=\frac{\lambda}{2}$
$K=\pi k A^{2} T \sin ^{2} \omega t$
$K_{\text {max }}$ at $\sin ^{2} \omega t=1, K_{\text {max }}=\pi k A^{2} T$
Similarly Average value of kinetic energy $\left(\mathrm{K}_{\text {average }}\right)=\frac{\int_{0}^{T} K d t}{\int_{0}^{T} d t}=\frac{\pi k A^{2} T}{2}$
2. (AD)

Angular frequency $\omega=\frac{1}{\sqrt{\text { LC }}}$
Since product of L and C is same for all the three circuits. Therefore ω is same for all the three circuits.
Hence, choice (A) is correct.
From conservation of mechanical energy
$\frac{1}{2} \mathrm{Li}_{0}^{2}=\frac{1}{2} \mathrm{CV}^{2}$ or $\mathrm{i}_{0}^{2}=\frac{\mathrm{C}}{\mathrm{L}} \mathrm{V}^{2}$
or $\quad \mathrm{i}_{0}=\sqrt{\frac{\mathrm{C}}{\mathrm{L}}} . V \quad$ or $\mathrm{i}_{0} \propto \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}$
$\frac{\mathrm{C}}{\mathrm{L}}$ is maximum for the third circuit.
Hence, maximum current is greatest for third circuit. So, choice (D) is correct.
3. (ABC)
δ will be maximum when $i_{\mathrm{i}}=90^{\circ}$
$\delta=\mathrm{i}_{1}+\mathrm{i}_{2}-\mathrm{A}$
$\Rightarrow \delta=90^{\circ}+i_{2}-\mathrm{A}$
$\Rightarrow \frac{\sin i_{2}}{\sin r_{2}}=\mu$
$\Rightarrow \sin i_{2}=\mu \sin \left(\mathrm{A}-\mathrm{r}_{1}\right)$
if $i_{1}=90^{\circ}$, then $\mathrm{r}_{1}=\theta_{\mathrm{C}}$
$\Rightarrow i_{2}=\sin ^{-1}\left[\mu \sin \left(\mathrm{~A}-\theta_{\mathrm{c}}\right)\right]$
and $i_{1} \neq i_{2}$

$\mathrm{i}_{2}=\mu\left[\sin \mathrm{A} \cos \mathrm{r}_{1}-\cos \mathrm{A} \sin \mathrm{r}_{1}\right]$
Since $\frac{\sin 90^{\circ}}{\sin r_{1}}=\mu$
$\Rightarrow \sin r_{1}=\frac{1}{\mu} \Rightarrow \cos r_{1}=\frac{\sqrt{\mu^{2}-1}}{\mu}$
$\therefore \sin i_{2}=\mu\left[\frac{\sqrt{\mathrm{u}^{2}-1}}{\mu} \sin \mathrm{~A}-\cos \mathrm{A} \frac{1}{\mu}\right]$
$\therefore \sin i_{2}=\left[\sqrt{\mu^{2}-1} \sin \mathrm{~A}-\cos \mathrm{A}\right]$
$\therefore i_{2}=\sin ^{-1}\left[\sin \mathrm{~A} \sqrt{\mu^{2}-1}-\cos \mathrm{A}\right]$ which is also the angle of emergence
$\therefore \mathrm{a}, \mathrm{b}$ and c are correct
4. (AB)

$$
\begin{aligned}
& \mathrm{U}=-\frac{\mathrm{Ke}^{2}}{3 \mathrm{r}^{3}}, \mathrm{~F}=\frac{-\mathrm{du}}{\mathrm{dr}}=\frac{3 \mathrm{ke}^{2}}{\mathrm{r}^{4}} \\
& \text { and } \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{3 \mathrm{ke}^{2}}{\mathrm{r}^{4}}, \mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}
\end{aligned}
$$

5. (ABC)

The change in magnetic flux is zero, hence the current in the ring will be zero.
6. (AD)

When capacitance is removed then circuit becomes $\mathrm{L}-\mathrm{R}$ circuit with

$$
\begin{equation*}
\tan \phi=\frac{\omega \mathrm{L}}{\mathrm{R}} \tag{i}
\end{equation*}
$$

When inductance is removed, the circuit becomes $\mathrm{C}-\mathrm{R}$ circuit with

$$
\begin{equation*}
\tan \phi=\frac{1}{\omega \mathrm{CR}} \tag{ii}
\end{equation*}
$$

from (i) and (ii) we get,
$\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}} \quad$ or $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$
So, in LCR circuit $Z=R$
and circuit is in resonance.
Hence $\mathrm{i}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{200}{100}=2 \mathrm{~A}$
$\mathrm{i}=2 \mathrm{~A}$
$\mathrm{P}_{\mathrm{av}}=\mathrm{V}_{\mathrm{rms}} \mathrm{i}_{\mathrm{rms}} \cos \phi=200 \times 2 \times 1$
$=400 \mathrm{~W}$.
7. (ABC)
$\frac{I_{\text {max }}}{I_{\text {min }}}=\frac{\left(a_{1}+a_{2}\right)^{2}}{\left(a_{1}-a_{2}\right)^{2}}$
$\mathrm{a}_{1}=\frac{2}{3} \sqrt{1}=\frac{2}{3} \mathrm{a}_{0}$
$\mathrm{a}_{2}=\sqrt{\mathrm{I}}=\mathrm{a}_{0}$
$\therefore \frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=25$
If an identical paper is pasted across second slit shifted C.B.F. will back in central point.
shift $=(\mu-1) \frac{\mathrm{tD}}{\mathrm{d}}$
fringe width $=\frac{\mathrm{n} \lambda \mathrm{D}}{\mathrm{d}}$
$\therefore \mathrm{n}=\frac{\text { shift }}{\text { fringe width }}=\frac{(\mu-1) \mathrm{t}}{\lambda}=15$.
8. (ACD)
$\mathrm{PV}=\mathrm{nRT}$
$=\frac{\mathrm{n}}{\mathrm{V}} \mathrm{RT}$
$\frac{1}{\rho}=\frac{R}{P} T$
9. (D)

Anywhere on screen because there is no relation between θ, μ
10. (A)

Total path difference
$\Delta \mathrm{x}=(\mu-1) \mathrm{t}-\mathrm{d} \sin \theta$
11. (C)
12. (D)
13. (8)
$\mathrm{dq}=\frac{\mathrm{q}}{2 \pi \mathrm{R}} \cdot \mathrm{Rd} \theta=\frac{\mathrm{q}}{2 \pi} \cdot \mathrm{~d} \theta$
$\mathrm{di}=\frac{\mathrm{dq}}{\mathrm{T}}=\frac{\mathrm{qd} \theta \omega}{2 \pi 2 \pi}$
$\mathrm{di}=\frac{\mathrm{q} \omega}{4 \pi^{2}} \cdot \mathrm{~d} \theta$
Rdo

$\mathrm{dB}=\frac{\mu_{0} \mathrm{di}(\mathrm{R} \sin \theta)^{2}}{2 \mathrm{R}^{3}}$
$\int d B=\int_{0}^{\pi} \frac{\mu_{0} \sin ^{2} \theta}{2 R}\left(\frac{q \omega}{4 \pi^{2}}\right) d \theta$
$B=\frac{\mu_{0} q \omega}{16 \pi R}$
$\phi=\mathrm{B} \pi \mathrm{a}^{2}$
$\phi=\pi \mathrm{a}^{2} \cdot \frac{\mu_{0} \mathrm{q} \omega}{16 \pi \mathrm{R}}$
$\phi=\frac{\mu_{0} q \omega a^{2}}{16 R}$
$|\varepsilon|=\left|\frac{\mathrm{d} \phi}{\mathrm{dt}}\right|$
$|\varepsilon|=\frac{\mu_{0} q^{2}}{16 \mathrm{R}} \alpha$.
$=8$ volt
$\mathrm{i}=\frac{8}{1}=8 \mathrm{~A}$.
14. (6)

Given $R_{1}=R_{2}=2 \Omega, E=12 \mathrm{~V}$
and $L=400 \mathrm{mH}=0.4 \mathrm{H}$. Two parts of the circuit are in parallel with the applied battery. So, the upper circuit can be broken as :

(A)

$+(\mathrm{B})$

Now refer figure (B) :
This is a simple $L-R$ circuit, whose time constant
$\tau_{L} \quad=L / R_{2}=\frac{0.4}{2}=0.2 \mathrm{~s}$
and steady state current $I=E_{1} / R_{2}=12 / 2=6 \mathrm{~A}$
Therefore, if switch S is closed at time $t=0$, then current in the circuit at any time t will be given by
$i(t)=i_{0}\left(1-\mathrm{e}^{-t / \tau_{\mathrm{L}}}\right)$
$i(t)=6\left(1-e^{-t / 02}\right)$
$=6\left(1-e^{-5 t}\right)=i$ (say)
Therefore, potential drop across L at any time t is :
$V=\left|\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}\right|=L\left(30 e^{-5 t}\right)$
$=(0.4)(30) e^{-5 t}$ or $\quad V=12 e^{-5 t}$ volt
The steady state current in L or R_{2} is
$i=6 \mathrm{~A}$
Now, as soon as the switch is opened, current in R_{1} is reduced to zero immediately. But in L and R_{2} it decreases exponentially. The situation is as follows:

Refer figure (e) :
Time constant of this circuit would be
$\tau_{L}=\frac{\mathrm{L}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{0.4}{(2+2)}=0.1 \mathrm{~s}$
\therefore Current through R_{1} at any time t is
$\mathrm{i}=\mathrm{i}_{\mathrm{o}} \times \mathrm{e}^{-t / \tau} \mathrm{L}^{\prime}=6 \times \mathrm{e}^{-10 \mathrm{t}}$.
15. (8)

The first half-lens forms the image $\mathrm{A}^{\prime} \mathrm{B}^{\prime}(=6 \mathrm{~mm})$.
$\therefore \frac{1}{\mathrm{v}}-\frac{1}{-20}=\frac{1}{15} \Rightarrow \mathrm{v}=+60 \mathrm{~cm}$.
$\therefore \quad \mathrm{m}_{1}=-3$.
The plane mirror forms the image $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime}$ with $\mathrm{A}^{\prime \prime}$ located 8 mm below the principal axis. The second half lens forms the image $A^{\prime \prime \prime} B^{\prime \prime \prime}$. Now $u=-60 \mathrm{~cm}$

$\Rightarrow \quad \mathrm{v}=+20 \mathrm{~cm}$
$\therefore \quad \mathrm{m}_{2}=-\frac{1}{3}$
$\therefore \quad \mathrm{A}^{\prime \prime \prime}$ is located at $\frac{8}{3} \mathrm{~mm}$ above the principal axis.
$\therefore \quad \mathrm{n}=8$.
16. (9)

According to the law of conservation of momentum in the case of γ-decay we have

$$
\mathrm{Mv}_{2}=\frac{\mathrm{E}}{\mathrm{c}} .
$$

Here $M=226 \times 1.66 \times 10^{-27} \mathrm{~kg}$
$=3.75 \times 10^{-25} \mathrm{~kg}$ is the mass of a ${ }^{226} \mathrm{Ra}$ nucleus, E_{α} the γ-quantum energy practically coincident with the total energy E_{2} released in the γ-decay, and c the velocity of light in vacuum. Whence for the kinetic energy T_{2} of the recoil nucleus we have,
$T_{2}=\frac{\mathrm{E}_{2}^{2}}{2 \mathrm{MC}^{2}}=0.095 \mathrm{eV}$.
In the case of α-decay the laws of conservation or energy and momentum yield

$$
\left(M-M_{\alpha}\right) v_{1}=M_{\alpha} v_{\alpha}
$$

$\frac{1}{2}\left(\mathrm{M}-\mathrm{M}_{\alpha}\right) \mathrm{v}_{1}^{2}+\frac{1}{2} \mathrm{M}_{\alpha} \mathrm{v}_{\alpha}^{2}=\mathrm{E}_{1}$
where v_{α} and v_{1} are the velocities of the α-particle and recoil nucleus, respectively, and M_{α} the α particle mass. From where, by eliminating v_{α}, we obtain the following

$$
T_{1}=\frac{\mathrm{M} \alpha}{\mathrm{M}} E_{1}=87 \mathrm{keV}
$$

Finally, the ratio of the kinetic energies is
$\frac{\mathrm{T} 1}{\mathrm{~T} 2}=\frac{2 \mathrm{MaC}^{2} \mathrm{E}_{1}}{\mathrm{E}_{2}^{2}}=9 \times 10^{5}$.
17. (2)

The activity of radioactive sample of decay constant λ at time t is given by
$\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
Where A_{0} is initial activity
The charge on capacitor in series
RC-circuit after time t is
$\mathrm{Q}=\mathrm{Q}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}$
Where Q_{0} is initial charge
Dividing (2) by (1), we get
$\frac{Q}{A}=\frac{Q_{0}}{A_{0}} \frac{e^{t / R C}}{e^{-\lambda t}}$
$\Rightarrow \quad \frac{\mathrm{Q}}{\mathrm{A}}=\frac{\mathrm{Q}_{0}}{\mathrm{~A}_{0}} \mathrm{e}^{\left(\lambda-\frac{1}{R C}\right) t}$
Clearly this ratio will be independent of t if
$\lambda-\frac{1}{\mathrm{RC}}=0 \Rightarrow \lambda=\frac{1}{\mathrm{RC}} \Rightarrow \mathrm{R}=\frac{1}{\mathrm{C} \lambda}$
or as $\lambda=\frac{1}{\tau}$
$\Rightarrow \mathrm{R}=\frac{\tau}{\mathrm{C}}=\frac{20 \times 10^{-3} \mathrm{~s}}{100 \times 10^{-6} \mathrm{~F}}=200 \Omega$
$\Rightarrow \mathrm{y}=2$
18. (4)
$\mathrm{W}_{\text {net }}=\left(2 \mathrm{P}_{0} \mathrm{v}_{0}\right)-\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)-\frac{\pi \mathrm{P}_{0} \mathrm{v}_{0}}{4}$
$\mathrm{W}_{\text {net }}=\mathrm{P}_{0} \mathrm{v}_{0}-\frac{\pi \mathrm{P}_{0} \mathrm{v}_{0}}{4}=(4-\pi) \frac{\mathrm{P}_{0} \mathrm{v}_{0}}{4}$;
Put $\pi=3.14$
$\mathrm{W}_{\text {net }}=\frac{0.86}{4} \mathrm{P}_{0} \mathrm{v}_{0}=(0.22)\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)$
Now,
$\mathrm{T}_{1}=\frac{\mathrm{P}_{0} \mathrm{v}_{0}}{\mathrm{R}}$
$\mathrm{T}_{2}=\frac{4 \mathrm{P}_{0} \mathrm{v}_{0}}{\mathrm{R}}$
$\mathrm{T}_{3}=\frac{2 \mathrm{P}_{0} \mathrm{v}_{0}}{\mathrm{R}}$

$$
\Delta \mathrm{U}_{1 \rightarrow 2}=1 \times \frac{3 \mathrm{R}}{2}\left[\mathrm{~T}_{2}-\mathrm{T}_{1}\right]
$$

Thus, $\quad \Delta \mathrm{U}_{2 \rightarrow 3}=1 \times \frac{3 \mathrm{R}}{2}\left[\mathrm{~T}_{3}-\mathrm{T}_{2}\right]$

$$
\Delta \mathrm{U}_{3 \rightarrow 1}=1 \times \frac{3 \mathrm{R}}{2}\left[\mathrm{~T}_{1}-\mathrm{T}_{3}\right]
$$

$\Delta \mathrm{Q}_{1 \rightarrow 2}=(4.5)\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)+(1.22)\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)$
$=(5.72)\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)$
$\Delta \mathrm{Q}_{2 \rightarrow 3}=-3 \mathrm{P}_{0} \mathrm{v}_{0}+0=-3\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)$
$\Delta \mathrm{Q}_{3 \rightarrow 1}=-1.5\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)-\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)=-2.5\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)$
Thus efficiency $\eta=\frac{W_{\text {net }}}{+ \text { ve heat }}$
$\eta=\frac{0.22\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)}{(5.72)\left(\mathrm{P}_{0} \mathrm{v}_{0}\right)}=0.04$
Thus efficiency is 4%
19. (2)
$\mathrm{E}=\frac{\mathrm{x}}{2} \frac{\mathrm{~dB}}{\mathrm{dt}}$
$\mathrm{E}=\frac{3 \mathrm{Kxt}^{2}}{2}$
$\mathrm{d} \tau=\frac{3 \mathrm{Kxt}^{2}}{2} \times \frac{2 \pi \mathrm{xdx}}{\pi \mathrm{r}^{2}} \mathrm{q} \cdot \mathrm{x}$

$\tau=\frac{3 \mathrm{Kt}^{2} \mathrm{q}}{\mathrm{r}^{2}} \int_{0}^{\mathrm{r}} \mathrm{x}^{3} \mathrm{dx}$
$\tau=\frac{3 \mathrm{Kq} \cdot \mathrm{t}^{2}}{4} \cdot \mathrm{r}^{2}$
torque due to friction force
$\mathrm{d} \tau=\mu \mathrm{dmgx}$
$\tau=2 \mu \mathrm{~g} \frac{\mathrm{qm}}{\mathrm{r}^{2}} \int_{0}^{\mathrm{r}} \mathrm{x}^{2} \mathrm{dx}=\frac{2}{3} \mu \mathrm{mgr}$
$\frac{3 \mathrm{Kq} \cdot \mathrm{t}^{2} \mathrm{r}^{2}}{4}=\frac{2}{3} \mu \mathrm{mgr}$
$\mathrm{t}=\sqrt{\frac{8 \mu \mathrm{mg}}{9 \mathrm{Kqr}}}=2$ seconds.
20. (5)

For translational motion

$$
\begin{equation*}
\mathrm{T}+100-80=8 \mathrm{a}_{\mathrm{G}} \tag{1}
\end{equation*}
$$

For rational motion about G

$$
\begin{equation*}
(100 \mathrm{~N})(0.2 \mathrm{~m})-\mathrm{T}(0.5 \mathrm{~m})=8\left(\frac{1}{2 \sqrt{2}}\right)^{2} \frac{\mathrm{a}_{\mathrm{G}}}{0.5} \tag{2}
\end{equation*}
$$

$20-0.5 \mathrm{~T}-2 \mathrm{a}_{\mathrm{G}}$
Solving equations (1) and (2)

$$
\mathrm{a}_{\mathrm{G}}=5 \mathrm{~m} / \mathrm{s}^{2}
$$

CHEMISTRY PAPER - II (SOLUTION)

21. (AB)

A- Due to Lanthanide Contraction ionization energy increases in 5d Transition series element.
$B-N$ has half filled orbital due to which IE is high .
$\mathrm{C}-$ Correct order of IE: $\mathrm{P}>\mathrm{S}>\mathrm{Si}$
D- Correct order of $\mathrm{IE}: \mathrm{Fe}>\mathrm{Mn}>\mathrm{Cr}$
22. (BC)

A- PH is 6.98
$\mathrm{B}-\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{C}-\mathrm{Kw}$ increases with temperature increase
D- Hydrolysis will take place at that point
23. (AD or ABD)

B- Van der Waals constants vary to some extent with temperature
24. (BC)
25. (AD)

D - Due to increase in concentration of $\mathrm{OH}^{-}, \mathrm{PH}$ value increases .
26. (CD)
$\mathrm{Al}_{2} \mathrm{O}_{3}$ and SnO_{2} are amphoteric oxides .
27. (BCD)
$\mathrm{Me}_{2} \mathrm{CCl}_{2}$ upon hydrolysis at undergoes hydrolysis and formed $\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}$ shows $\mathrm{P}-\mathrm{P}$ overlapping.
28. (ABC)
$\mathrm{a} \rightarrow \mathrm{b} \& \mathrm{c} \rightarrow \mathrm{d}$ represent conversion from liquid to vapour and $\mathrm{b} \rightarrow \mathrm{c}$ represent vapor to liquid .
29. (C)

30. (D)

31. (B)
$1(\mathrm{M})$ of 2-chloropentane $=\frac{106.5}{1000}=0.1065 \mathrm{~g} / \mathrm{ml}$
$10 \mathrm{~cm}=1 \mathrm{dm}$
$\therefore[\alpha]=\frac{\theta}{\ell \times c}=\frac{3.64}{1 \times 0.1065}=34.2^{\circ}$
32. (B)
100% pure $(-)$ enantiomer specific relation $=-50^{\circ}$
\therefore where rotation is $-35^{\circ} \mathrm{C}$ that indicates 70% of $(-)$ enantiomer in excess
\therefore total $(-)$ enantiomer $(70+15)=85$
33. (6)

34. (4)
$\mathrm{Ka}=10^{-4}, \quad \mathrm{PH}=\mathrm{PK}_{\mathrm{a}}+\log [$ Salt $] /[$ Acid $]$
35. (2)

36. (2)
Ag^{+}and Pb^{2+}
37. (3)

PCl3F2, XeF4, BF3 have no dipole moment.
38. (7)
39. (3)
40. (2)

$$
\begin{aligned}
& \mathrm{Ti}=2 \mathrm{a} / \mathrm{Rb} \\
& \mathrm{~Tb}=\mathrm{a} / \mathrm{Rb}
\end{aligned}
$$

MATHS PAPER - II (SOLUTION)

41. (ABCD)

Since here Rolle's theorem is applicable to the function f in the interval $[-2,2]$
$\Rightarrow \quad f(x)$ is continuous in $[-2,2]$ and differentiable in $(-2,2)$
Given $f(x)$ is even, so we find those a, b and λ, which make f to be continuous for $x \in[0,2]$,
Now $f(x)=\left\{\begin{array}{ll}a x^{2}+b, & 0 \leq x<1 \\ 1, & x=1 \\ \lambda / x, & 1<x \leq 2\end{array}\right.$.
Since $f(x)$ is continuous in $[0,2]$
$\Rightarrow \quad f(x)$ is continuous at $x=1$
$\Rightarrow a+b=1=\lambda$
Now $f^{\prime}(x)= \begin{cases}2 a x, & 0<x<1 \\ -\lambda / x^{2}, & 1<x<2\end{cases}$
Since $f(x)$ is differentiable in $(0,2)$
$\Rightarrow \quad f(x)$ is differentiable at $x=1$
$\Rightarrow 2 a=-\lambda$
Solving (1) and (2), we get $a=-\frac{1}{2}, b=\frac{3}{2}, \lambda=1$.
Since f is even, so $f(-2)=f(2)$ is already true.
Thus Rolle's theorem is applicable to f, if $a=-\frac{1}{2}, b=\frac{3}{2}, \lambda=1$.

42. (BCD)

If $\mathrm{a}<\mathrm{b}<\mathrm{c}<4$, then $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=3$, so $\mathrm{A}=2$. Hence (B) true. Further this is a known fact that $\mathrm{A}=\mathrm{H}$ iff $\mathrm{a}=\mathrm{b}=\mathrm{c}$. Hence (C) is true. Also if not all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are equal, then this is a known fact that A $>\mathrm{G}>\mathrm{H}$.
43. (CD)
44. (ACD)

We have $\frac{\log a}{\log (b+c)}+\frac{\log a}{\log (c-b)}=\frac{2 \log a}{\log (c+b)} \cdot \frac{\log a}{\log (c-b)}$
$\Rightarrow \log (c-b)+\log (c+b)=2 \log a$
$\Rightarrow \log \left(c^{2}-b^{2}\right)=\log a^{2}$
$\therefore \quad c^{2}-b^{2}=a^{2}$
$\Rightarrow \triangle A B C$ is right angled triangle with $C=\frac{\pi}{2}$.
45. (AC)
46. (AB)
$\because z_{1}, z_{2}$ be the roots of the equation $a z^{2}+b z+c=0$ with $\left|z_{1}\right|=1$
$\begin{array}{ll}\therefore & z_{1}+z_{2}=-\frac{b}{a} \text { and } z_{1} z_{2}=\frac{c}{a} \\ \therefore & \left|z_{1}+z_{2}\right|=\left|-\frac{b}{a}\right|=1 \text { and }\left|z_{1} z_{2}\right|=\left|\frac{c}{a}\right|=1\end{array}$
Now $\left|z_{1}+z_{2}\right|=1$
$\Rightarrow\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}+\bar{z}_{2}\right)=1 \quad \Rightarrow 2+\bar{z}_{1} z_{2}+z_{1} \bar{z}_{2}=1$
$\Rightarrow \quad 2+\frac{z_{2}}{z_{1}}+\frac{z_{1}}{z_{2}}=1 \quad \Rightarrow \frac{\left(z_{1}+z_{2}\right)^{2}}{z_{1} z_{2}}=1 \quad \Rightarrow \quad \frac{b^{2}}{a^{2}}=\frac{c}{a}$
$\Rightarrow b^{2}=a c$.
Now $\quad\left|z_{1}+z_{2}\right|=1$
$\Rightarrow \quad\left|z_{1}\right|\left|1+e^{i \theta}\right|=1 \quad\left(\because z_{2}=z_{1} e^{i \theta}\right)$
$\Rightarrow 2 \cos \frac{\theta}{2}\left|\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right|=1$
$\Rightarrow \quad 2 \cos \frac{\theta}{2}=1 \quad \Rightarrow \quad \frac{\theta}{2}=\frac{\pi}{3} \quad \Rightarrow \theta=\frac{2 \pi}{3}$
Now $P Q=\left|z_{2}-z_{1}\right|$

$$
\begin{aligned}
& =\left|z_{1}\right|\left|e^{i \theta}-1\right| \\
& =1 \cdot|\cos \theta-1+i \sin \theta| \\
& =\left|1-2 \sin ^{2} \frac{\theta}{2}-1+2 i \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right| \\
& =\left|-2 \sin \frac{\theta}{2}\right| \cdot\left|\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right| \\
& =\left|2 \sin \frac{\theta}{2}\right|=\sqrt{3} \quad\left[\because \theta=\frac{2 \pi}{3}\right] \\
\therefore \quad P Q & =\left|z_{2}-z_{1}\right|=\sqrt{3}
\end{aligned}
$$

47. (ABC)
$x_{1}+x_{2}+\ldots \ldots+x_{100}=\frac{100}{2}\left(x_{1}+x_{100}\right)=-1$
$x_{2}+x_{4}+\ldots \ldots+x_{100}=\frac{50}{2}\left(x_{1}+d+x_{100}\right)=1$
solving (1) and (2) we get $d=\frac{3}{50}$
Now $x_{1}+x_{1}+99 d=-1$
$\Rightarrow \quad x_{1}=-\frac{149}{50}$
$\Rightarrow \quad x_{1}^{2}+x_{2}^{2}+\ldots \ldots+x_{100}^{2}=\frac{14999}{50}$
$\mathrm{t}_{100}=\mathrm{x}_{1}+(100-1) \mathrm{d}=\frac{-149}{50}+99 \times \frac{5}{50}=\frac{74}{25}$
48. (AB)

Focus of the parabola $y^{2}=2 p x$ is $\left(\frac{p}{2}, 0\right)$
$\therefore \quad$ Centre of circle is $\left(\frac{p}{2}, 0\right)$
Radius of the circle $=$ Distance between focus and directrix

$$
\begin{align*}
& =\text { semi latusrectum } \\
& =p \tag{1}
\end{align*}
$$

$\therefore \quad$ Equation of circle is $\left(x-\frac{p}{2}\right)^{2}+(y-0)^{2}=p^{2}$

Solving eq. (i) and $y^{2}=2 p x$, then

$$
\begin{array}{ll}
& \left(x-\frac{p}{2}\right)^{2}+2 p x=p^{2} \\
\Rightarrow & x^{2}+p x=\frac{3 p^{2}}{4} \\
\Rightarrow & 4 x^{2}+4 p x-3 p^{2}=0 \\
\therefore & x=p / 2 \text { and } x=-3 p / 2 \\
\because & y^{2}=2 p x=2 p\left(\frac{p}{2}\right)=p^{2} \\
\Rightarrow & y= \pm p \\
\text { and } & y^{2}=2 p\left(-\frac{3 p}{2}\right)=-3 p^{2}
\end{array}
$$

$\Rightarrow \quad y$ is imaginary (Impossible)
$\therefore \quad$ Point of intersection are $\left(\frac{p}{2}, p\right)$ and $\left(\frac{p}{2},-p\right)$
49. (D)

$$
f(x)=x^{4}-2 x^{2}+k=0 \text { then } 0<\alpha<\beta<1
$$

$\Rightarrow \quad \mathrm{f}(\alpha)=\mathrm{f}(\beta)=0$
then for same $\mathrm{c} \in\left(\alpha, \beta, \mathrm{f}^{\prime}(\mathrm{c})=0\right.$
$\Rightarrow \quad 4 \mathrm{c}^{3}-4 \mathrm{c}=0 \Rightarrow \mathrm{c}=0$ or
but none of these value c lies in (α, β) so $\mathrm{m} \in \phi$.
50. (C)

$$
h(x)=\left(f^{\prime}(x)-f^{\prime}(a)\right)\left(g^{\prime}(b)-g^{\prime}(x)\right)
$$

Apply Rolles Theorem
$\therefore \quad$ their exist some $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\mathrm{h}^{\prime}(\mathrm{c})=0$
$\Rightarrow \quad h^{\prime}(x)=f^{\prime \prime}(x)\left(g^{\prime}(b)-g^{\prime}(x)\right)-g^{\prime \prime}(x)\left(f^{\prime}(x)-f^{\prime}(a)\right)$
$\left.\Rightarrow \quad h^{\prime}(c)=f^{\prime \prime}(c) \cdot\left(g^{\prime}(b)-g^{\prime}(c)\right)-g^{\prime \prime} 9 c\right)\left(f^{\prime}(c)-f^{\prime}(a)=0\right.$
$\Rightarrow \quad \frac{\mathrm{f}^{\prime}(\mathrm{c})-\mathrm{f}^{\prime}(\mathrm{a})}{\mathrm{g}^{\prime}(\mathrm{b})-\mathrm{g}^{\prime}(\mathrm{c})}=\frac{\mathrm{f}^{\prime \prime}(\mathrm{c})}{\mathrm{g}^{\prime \prime}(\mathrm{c})}$.
51. (D)

Let the line be $x=-1+r \cos \theta$ and $y=1+r \sin \theta$

$$
\begin{array}{ll}
\Rightarrow \quad & y^{2}=4 \mathrm{x} \\
& \mathrm{r}^{2} \sin ^{2} \theta-2(2 \cos \theta-\sin \theta) \mathrm{r}+5=0
\end{array}
$$

If $\mathrm{r}_{1}, \mathrm{r}_{2}$ are the roots them

$$
\begin{aligned}
& r_{1}+r_{2}=\frac{2(2 \cos \theta-\sin \theta)}{\sin ^{2} \theta} \text { and } r_{1} r_{2}=\frac{5}{\sin ^{2} \theta} \\
\Rightarrow \quad & r=\frac{2 r_{1} r_{2}}{\left(r_{1}+r_{2}\right)} \Rightarrow 2 r \cos \theta-r \sin \theta=5
\end{aligned}
$$

Locus of $\mathrm{P} 2(\mathrm{x}+1)-(\mathrm{y}-1)=5$
$\Rightarrow \quad 2 \mathrm{x}-\mathrm{y}-2=0$
52. (C)
$\mathrm{r}=\frac{\mathrm{r}_{1}+\mathrm{r}_{2}}{2}=\frac{2 \cos \theta-\sin \theta}{\sin ^{2} \theta} \Rightarrow(\mathrm{r} \sin \theta)^{2}=2 \mathrm{r} \cos \theta-\mathrm{r} \sin \theta$
$\Rightarrow \quad(y-1)^{2}=2(x+1)-(y-1) \Rightarrow y^{2}-2 x-y-2=0$
53. (1)

Imposing the conditions; $\frac{b}{2 a}>2, b^{2} \geq 48 a$ and $f(2)$ i.e., $2 a-b+6>0$ there is only one solution for $(\mathrm{a}, \mathrm{b}) \equiv(1,7)$
54. (7)

The sum of coefficients of terms not containing $y=3^{6}$
The sum of coefficients of terms not containing both $x \& y=2^{6}$
So the required number $=3^{6}-2^{6}=665$.
55. (3)
56. (2)
$a+b=10 c \& a b=-11 d, c+d=10 a \& c d=-11 b$.
$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=10(\mathrm{c}+\mathrm{a}) \& \mathrm{abcd}=121 \mathrm{bd} \quad \Rightarrow \quad \mathrm{ac}=121$
We have $\mathrm{a}^{2}-10 \mathrm{ac}-11 \mathrm{~d}=0$
\& $\quad c^{2}-10 a c-11 b=0$
$\mathrm{a}^{2}+\mathrm{c}^{2}-20 \mathrm{ac}-11(\mathrm{~b}+\mathrm{d})=0$
$(a+c)^{2}-22 \times 121-11 \times 9(a+c)=0$
$\mathrm{a}+\mathrm{c}=121-22$
For $\mathrm{a}+\mathrm{c}=-22$ we get $\mathrm{a}=\mathrm{c} \quad$ (Not possible)
$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=10(\mathrm{a}+\mathrm{c})=1210 \Rightarrow 605 \lambda=1210 \Rightarrow \lambda=2$
57. (6)

Since the product of the slopes of the four lines represented by the given equation is 1 and a pair of lines represent the bisectors of the angles between the other two, the product of the slopes of each pair is -1 . So let the equation of one pair be $a x^{2}+2 h x y-a y^{2}=0$.
The equation of its bisector is $\frac{x^{2}-y^{2}}{2 a}=\frac{x y}{h}$
By hypothesis

$$
\begin{aligned}
& x^{4}+x^{3} y+c x^{2} y^{2}-x y^{3}+y^{4} \\
& =\left(a x^{2}+2 h x y-a y^{2}\right)\left(h x^{2}-2 a x y-h y^{2}\right) \\
& =a h\left(x^{4}+y^{4}\right)+2\left(h^{2}-a^{2}\right)\left(x^{3} y-x y^{3}\right)-6 a h x^{2} y^{2}
\end{aligned}
$$

Comparing the respective co-efficient we get

$$
\mathrm{ah}=1 \text { and } \mathrm{c}=-6 \mathrm{ah}=-6
$$

58. (4)
$\Rightarrow|z-7-9 i|=3 \sqrt{2}$
$\Rightarrow[|z-7-9 i|]=[3 \sqrt{2}]=4$.

59. (6)
60. (9)

Put $\mathrm{x}=\mathrm{t}^{6}$
$I=\int \frac{\left(t^{6}+t^{4}+t\right) 6 t^{5}}{t^{6}\left(1+t^{2}\right)} d t=6 \int \frac{t^{5}+t^{3}+1}{1+t^{2}} d t$
$=6 \int \mathrm{t}^{3} \mathrm{dt}+6 \int \frac{\mathrm{dt}}{\mathrm{t}^{2}+1}=\frac{3}{2} \mathrm{x}^{2 / 3}+6 \tan ^{-1} \mathrm{x}^{1 / 6}+\mathrm{C}$
$\therefore 2 \mathrm{~A}+\mathrm{B}=9$.

