

# PART (A) : PHYSICS

#### 1. (D)



From constraint equation

 $x + R\theta = \text{constant}$   $\frac{dx}{dt} + R \frac{d\theta}{dt} = 0$   $\Rightarrow \frac{d^2x}{dt^2} + R \frac{d^2\theta}{dt^2} = 0$ Where  $\frac{dx}{dt} = v$ , velocity of hemi-sphere and  $\frac{d^2x}{dt^2} = a$ , acceleration of hemi-sphere

$$\Rightarrow R\omega = -v \Rightarrow \omega = \frac{v}{R}$$

[Taking direction into consideration]

Similarly  $\alpha = \frac{a}{R} [\omega \text{ and } \alpha]$  are angular velocity and accelerations of particle with respect to hemisphere is,  $a_r = R\alpha$  and velocity is,  $v_1 = R\omega$ . Velocity of particle with respect to ground  $v_{PG} = v_{PH} + v_{HG}$ 

$$\Rightarrow v_{PG} = \sqrt{v^2 + v^2 + 2v^2 \cos 120} = v$$

$$120^{\circ}$$

$$v = R\omega$$

Acceleration of particle with respect to ground

$$a_{PG} = a_{PH} + a_{HG}$$

$$\Rightarrow a = \sqrt{\left(\frac{v^2}{R} + \frac{\sqrt{3}a}{2}\right)^2 + \left(\frac{a}{2}\right)^2}$$

$$a_t = Rd = a$$

$$a_t = \frac{v^2}{R}$$

2. (A)

A  $\propto$  x (given). Velocity v  $\propto \frac{1}{x}$ 



$$p + \frac{1}{2}pv^2 = constant$$

# 3. (B)

Apply conservation of energy. Kinetic energy of the rod is converted into heat dissipated in resistance R.

$$\frac{\mu_1}{F} = \frac{2(\mu_f - \mu_1)}{+R_1} + \frac{2(\mu_3 - \mu_2)}{+R_2} - \frac{2\mu_3}{-R_3}$$

5. (D)

The focal length of the lens remains unchanged by changing its aperture. The intensity of the image is proportional to the uncovered area.

$$\frac{I_{\rm f}}{I_{\rm i}} = \frac{A_{\rm f}}{A_{\rm i}} = \frac{\frac{\pi}{4} \left[ d^2 - \frac{d^2}{4} \right]}{\frac{\pi}{4} d^2} = \frac{3}{4}$$
$$I_{\rm f} = \frac{3}{4} I_{\rm i} = \frac{3}{4} I$$

6.

(A) Path difference,  $\Delta x = \left\{ \left( S_2 P - t_2 \right) + \mu_2 t_2 \right\} - \left\{ \left( S_1 P - t_1 \right) + \mu_1 t_1 \right\}$ 

$$= S_2 P - S_1 P + (\mu_2 - 1)t_2 - (\mu_1 - 1)t_1$$
  
For nth order maxima

$$n\lambda = \frac{D}{d} \{ (\mu_2 - 1)t_2 - (\mu_1 - 1)t_1 \} + \frac{dy}{D}$$
  

$$\Rightarrow For zero order maxima$$
  

$$y_0 = \frac{D}{d} \{ (\mu_2 - 1)t_2 - (\mu_1 - 1)t_1 \}$$

When both sheets have same average thickness  $\frac{t_1 + t_2}{2}$  and refractive index  $\mu_1$  and  $\mu_2$ 

$$y_1 = \frac{D}{d} \left\{ (\mu_2 - \mu_1) \frac{t_1 + t_2}{2} \right\}$$



$$\Rightarrow \frac{5 \times 10^{-3} \times 1 \times 10^{-3}}{1} = (1.6 - 1.4) \frac{t_1 + t_2}{2}$$
  
$$\therefore t_1 + t_2 = 5 \times 10^{-5} \qquad \dots \dots (i)$$

7. (B,C)

 $\varphi$  crossing through Gaussian surface does not depend on location of charge while E depends. If q crosses the boundary, then  $q_{enclosed}$  charges and hence flux and E.

8. (B,C,D)  

$$\tan \phi = \frac{X_{C} - X_{L}}{R} = 0$$

$$\Rightarrow \phi = 0 \text{ as } X_{C} = X_{L}$$

$$\Rightarrow Z = R$$

$$\Rightarrow V_{C} = IX_{C} \text{ and } I = \varepsilon_{0} / Z = \varepsilon_{0} / R \text{ When } R(\downarrow), I(\uparrow) \text{ and hence } V_{C}(\uparrow)$$



Due to induction effect the situation is shown clearly in figure. Due to  $+q_1$ , let induced charges is  $-q_1$  at end A and  $+q_1$  at end B while due to  $-q_2$  induced charges are  $-q_2$  and  $q_2$  at ends A and B respectively. Thus the end A acquires negatively charged and B acquires positive charge. Electric force experienced by  $q_1$  or  $-q_2$  has to be computed by using principle of superposition.

For  $+q_1 \rightarrow$  Due to  $-q_2$  towards right

Due to rod towards right

Hence, total force experienced by  $+q_1$  in present situation is greater than as compared to the case without rod.

Same is the situation for  $-q_2$ 

### 10. (B,D)

Current in wire  $=\frac{3}{30}=0.1A$ Maximum voltage can read =2V $\lambda = \frac{V}{I = 0.2 \text{ mV} / \text{mm}} = \frac{2}{10 \times 10^3} = 0.2 \text{mV} / \text{mm}$ Least account of scale =1 mmAccuracy =0.2 mV

### 11. (A,C)

First of all draw FBD of  $P_3$  let tension in 3 strings are  $T_1, T_2$  and  $T_3$  respectively.





 $2T_1 - T_1 = 0 \times a \Longrightarrow T_1 = 0$ Now draw FBD of P<sub>4</sub> and P<sub>5</sub>  $2T_1 - T_2 = 0 \Longrightarrow T_2 = 0$ 



Similarly, for acceleration draw the FBD of  $P_6$  and  $P_7$  and get the value of acceleration.

### 12. (A,D)

Magnitude of induced electric field due to change in magnetic flux is given by

$$\oint \mathbf{E} \cdot \mathbf{d}l = \frac{\mathbf{d}\phi}{\mathbf{d}t} = \mathbf{S} \cdot \frac{\mathbf{d}\mathbf{B}}{\mathbf{d}t}$$
  
Or  $\mathbf{E} \cdot l = \pi \mathbf{R}^2 \left(2\mathbf{B}_0 t\right) \quad \left(\text{Since } \frac{\mathbf{d}\mathbf{B}}{\mathbf{d}t} = 2\mathbf{B}_0 t\right)$ 

Here, E= induced electric field due to change in magnetic flux. Or  $E(2\pi R) = 2\pi R^2 B_0 t$ 

Or 
$$E(2\pi R) = 2\pi R B_0$$

Or  $E = B_0 Rt$ 

Hence,  $F = QE = B_0 QRt$ 

This force is tangential to ring. Ring starts rotting when torque of this force is greater than the  $\tau_{Fmax} = (\mu mg)$  or when

Torque due to maximum friction

 $\tau_F \ge \tau_{f max}$ 

This is the limiting case

$$\tau_{\rm F} = \tau_{\rm i\,max} \text{ or } \text{F.R} = (\mu \text{mg}) \text{R}$$



Or  $F = \mu mg$  or  $B_0QRt = \mu mg$ It is given that ring starts rotating after 2s. So, putting t = 2, we get  $\mu = \frac{2B_0RQ}{mg}$ After two seconds  $\tau_F > \tau_{imax}$ Therefore, net torque is  $\tau = \tau_F - \tau_{fmax} = B_0QR^2t - \mu mgR$ Substituting  $\mu = \frac{2B_0RQ}{mg}$ , we get Or  $\tau = B_0QR^2(t-2)$ Or  $I\left(\frac{d\omega}{dt}\right) = B_0QR^2(t-2)$ Or  $mR^2\left(\frac{d\omega}{dt}\right) = B_0QR^2(t-2)$ Or  $\int_0^{\omega} d\omega = \frac{B_0Q}{m}\int_2^4(t-2)dt$ Or  $\omega = \frac{2B_0Q}{m}$ 

Now, magnetic field is switched off i.e. only retarding torque is present due to friction. So, angular retardation will we

$$\alpha = \frac{\tau_{f \text{ max}}}{I} = \frac{\mu m g R}{m R^2} = \frac{\mu g}{R}$$
  
Therefore, applying  $\omega^2 = \omega_0^2 - 2\alpha\theta$   
Or  $\theta = \left(\frac{2B_0Q}{m}\right)^2 - 2\left(\frac{\mu g}{R}\right)\theta$   
Or  $\theta = \frac{2B_0^2Q^2R}{\mu m^2g}$   
Substituting  $\mu = \frac{2B_0RQ}{mg}$   
We get,  $\theta = \frac{B_0Q}{m}$ 

13. (A,D)

$$2V = k \cdot \left(\frac{q_A}{R} + \frac{q_B}{2R}\right)$$
  

$$2V = k \left(\frac{2q_A + q_B}{2R}\right)$$
  

$$\frac{3}{2}V = k \cdot \left(\frac{q_A}{2R} + \frac{q_B}{2R}\right)$$
  

$$\frac{3}{2}V = k \cdot \left(\frac{q_A + q_B}{2R}\right) \qquad \dots \dots (ii)$$





: Potential difference between A and B is  $\frac{1}{2}$  V (after earthin)

### 14. (A,B,C,D)

#### 15. (C)

It is given that electric potential energy stored in the capacitor is  $7.5 \times 10^{-4}$  J. In the charged state, since the capacitance is C<sub>f</sub> and the battery has remained connected.

Therefore, 
$$\frac{1}{2}C_{f}V^{2} = 7.5 \times 10^{-4}$$
  
 $\frac{1}{2}C_{f}(25)^{2} = 7.5 \times 10^{-4}$   
 $C_{f} = 2.4 \times 10^{-6}$  F  
Therefore,  $C_{f} = 2.4 \mu$ F  
Or  $C_{i} = \frac{C_{f}}{3} = 0.8 \mu$ F



#### 16. (A)

When the switch S is closed, the capacitor becomes charged and the plates A and B, then carry +Q and -Q charges. Consequently, the plates develop a force of attraction given by

17. (6.00)

Here, n = 660 hz, v = 330 ms<sup>-1</sup>  $\lambda = \frac{v}{f} = \frac{330}{660} = 0.5m$ Resonance lengths are  $\frac{\lambda}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}, \frac{7\lambda}{4}, \frac{9\lambda}{4}, \frac{11\lambda}{4}, \frac{13\lambda}{4}$  and so on.  $\frac{13\lambda}{4} = \frac{13 \times 0.5}{4} = 1.6m$ 

Which is greater than 1.5 m therefore total number of resonances heard is 6.

#### 18. (6.00)

For entering without jerk  $v_2 = l\omega_0 = 2rad/s$ . Using work energy theorem on sleeve after

Entering in the frame of rod

$$W_{\text{spring}+W_{\text{centrifugal}}} = \Delta K$$
  
$$-\frac{1}{2}kl^2 - \frac{1}{2}m\omega^2 l^2 = 0 - \frac{1}{2}mv_1^2$$
  
$$\Rightarrow v_1^2 = 8$$
  
Now,  $K = \frac{1}{2}m(v_1^2 + v_2^2) = 6$ 



19. (5.00)  $\tan 37^{\circ} = \frac{l}{h}, \frac{3}{4} = \frac{l}{h}, l = \frac{3h}{4}$  x = extension in spring  $= \sqrt{h^{2} + i^{2}} - h$   $= \sqrt{\frac{gh^{2} + 16h^{2}}{16}} - h = \frac{h}{4}$   $\frac{1}{2}kx^{2} = \frac{1}{2}mv^{2}$   $\Rightarrow \frac{K}{m}\left(\frac{h}{4}\right)^{2} = v^{2}$   $\Rightarrow v = \frac{h}{4}\sqrt{\frac{k}{m}} = 5m/s$ 

20. (3.00)



peg will come out if  $T \sin 30^{\circ} = 100N$  T = 200N(max)For monkey, T - mg = ma  $200 - 15 \times 10 = 15a$  $a = \frac{50}{15} = \frac{10}{3} \text{ m/s}^2$ 



# PART (B) : CHEMISTRY

#### 21. (B)

In the central atom has lesser tendency or no tendency or capability to donate a pair of electron to <-C the stability of C-O bond is more the pair of electron on the central atom and its donating tendency decreases the C=O bond stability.

22. (A)





(D)  $CH_3 - CH = CH - CHO$ 

HCOO<sup>−</sup>Na<sup>+</sup>; CH<sub>3</sub>OH

CH<sub>3</sub>COO<sup>-</sup>NA<sup>+</sup>;HCOO<sup>-</sup>Na<sup>+</sup>

23. (A)





## 24. (C)

Compound given in option A,B and D do not have any hemiacetal group so can't be oxidised by Tollen's reagent and will not given Tollen's test.

25. (B)

# 26. (D)

When all particles along body diagonal are removed 2X atoms from corner are removed one Y particle removed and 2Z particle removed.

X particle  $=\frac{1}{8} \times 6 + \frac{1}{2} \times 6 = \frac{15}{4}$ (Y particle=3, Z particle=6)  $\therefore X_{15}Y_3Z_6 = X_5Y_5Z_8$ 

27. (A,B,C)



# 28. (A,B,C)

 $N_2H_4$  is a basic substance called hydrazine. Rest all are pseudohalogenic acids.

29. (A,C)  $\log \frac{K_{p_2}}{K_{p_1}} = \frac{\Delta H}{2.303R} \left[ \frac{1}{T_1} - \frac{1}{T_2} \right]$ 

# 30. (A,C)

Adipic acid on heating gives cyclopentanone. Malonic acid on heating gives acetic acid.

31. (C)  

$$C_2O_4^{2-} \longrightarrow 2CO_2$$
  
 $+3 \qquad +4$   
Equivalent weight  $= \frac{M}{4}$   
 $Ca(HC_2O_4)_2 \rightleftharpoons 2HC_2O_4^{-}$   
 $HC_2O_4^{-} \rightleftharpoons H^+ + C_2O_4^{2-}$ 



|     | Equivalent weight $=\frac{M}{2}$                                                                                                                                                                                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $C_2O_4^{2-}$ can be estimated by $MnO_4^-/H^+$ , (C) is also true                                                                                                                                                                                                                                                  |
| 32. | (B,C)<br>Correct name for $Na_2[Ni(EDTA)]$ -Sodium ethylenediaminetetratonickelate (II)                                                                                                                                                                                                                             |
| 33. | (ABD)                                                                                                                                                                                                                                                                                                               |
| 34. | $(A,B)$ $NH_4NO_3 + NaOH \longrightarrow NH_3 \uparrow + NaNO_3 + H_2O$ $NH_4NO_2 + NaOH \longrightarrow NH_3 \uparrow + NaNO_2 + H_2O$ $NH_3 \text{ is non-inflammable}$ $NaNO_3 + 4Zn + 7NaOH \longrightarrow 4Na_2ZnO_2 + NH_3 + 2H_2O$ $NaNO_2 + 3Zn + 5NaOH \longrightarrow 3Na_2ZnO_2 + NH_3 + H_2O$          |
| 35. | (C)<br>No. of Ca atom $= 8 \times \frac{1}{8} = 1$<br>No. of O atom $= 6 \times \frac{1}{2} = 3$<br>No. of Tia atom $= 1 \times 1 = 1$<br>Total no. of atoms $= 5$                                                                                                                                                  |
| 36. | (B)<br>CaTiO <sub>3</sub><br>2+x-6=0<br>x=4                                                                                                                                                                                                                                                                         |
| 37. | (3.00)<br>AgCl, $Zn(OH)_2$ , $Cu(OH)_2$ will dissolve in excess of $NH_4OH$                                                                                                                                                                                                                                         |
| 38. | (3.00)                                                                                                                                                                                                                                                                                                              |
| 39. | (2.00)<br>$2CI^{-} \longrightarrow CI_{2} + 2e^{-}$ $CI_{2} + 2NaOH \longrightarrow NaClO + NaCl + H_{2}O$ $10^{6} \times 1 \times \frac{7.45}{100}$ Moles of Cl <sub>2</sub> required = 10 <sup>3</sup><br>$2 \times 10^{3} \times 96500 = 9.65 \times t$ Equation of Cl <sub>2</sub> required = 2×10 <sup>3</sup> |
|     | $2 \times 10^7 = t$                                                                                                                                                                                                                                                                                                 |









# PART (C) : MATHEMATICS

#### 41. (B)

#### **Concept involved**

If radius of the circle is greater than difference of length of semi major axis and semi-minor axis of the given ellipse, then we cannot have any normal to the ellipse which can be tangent to the circle. Let  $P(a\cos\theta, b\sin\theta)$  be any point on the ellipse





Equation of normal at  $(a\cos\theta, b\sin\theta)$  is

 $\frac{ax}{a\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2 \qquad \dots \dots \dots (i)$ 

If this line is also tangent to a circle  $x^2 + y^2 = r^2$ , then r = Length of perpendicular from centre (0,0) of the circle to the normal Eq.(i)

$$r = \frac{a^2 - b^2}{\sqrt{\frac{a^2}{\cos^2 \theta} + \frac{b^2}{\sin^2 \theta}}}$$
Now,  $\frac{a^2}{\cos^2 \theta} + \frac{b^2}{\sin^2 \theta} = a^2 (1 + \tan^2 \theta) + b^2 (1 + \cot^2 \theta)$ 

$$= a^2 + b^2 + a^2 \tan^2 \theta + b^2 \cot^2 \theta$$
On applying AM  $\geq$  GM, we get
$$a^2 + b^2 + a^2 \tan^2 \theta + b^2 \cot^2 \theta \geq a^2 + b^2 = 2 \times a \times b$$

$$\Rightarrow \frac{a^2}{\cos^2 \theta} + \frac{b^2}{\sin^2 \theta} \geq (a + b)^2$$

$$\Rightarrow \frac{1}{\sqrt{\frac{a^2}{\cos^2 \theta} + \frac{b^2}{\sin^2 \theta}}} \leq \frac{1}{\sqrt{(a + b)^2}}$$

$$\Rightarrow \frac{a^2 - b^2}{\sqrt{\frac{a^2}{\cos^2 \theta} + \frac{b^2}{\sin^2 \theta}}} \leq \frac{a^2 - b^2}{|a + b|}$$

$$\Rightarrow r \leq a - b$$



Obviously, if radius of the circle (r) is greater than (a - b), then we cannot draw any normal to the given ellipse which can also be tangent to the given circle.

Here, radius of the circle =3 > (5-3). Hence, we cannot draw any a normal to the ellipse which can also be tangent to the given circle

42. (A)

Given functional equation is

$$2f(x-1)-f\left(\frac{1-x}{x}\right) = x \qquad \dots \dots (i)$$
  
Replacing x by  $\frac{1}{x}$ , we get  

$$2f\left(\frac{1}{x}-1\right)-f\left(\frac{1-\frac{1}{x}}{1}\right) = \frac{1}{x}$$
  

$$\Rightarrow 2f\left(\frac{1-x}{x}\right)-f(x-1) = \frac{1}{x} \qquad \dots \dots (i)$$

On multiplying by 2 in Eq. (i) and the adding Eqs. (i) and (ii), we get

$$2\left\lfloor 2f(x-1) - f\left(\frac{1-x}{x}\right) \right\rfloor + \left\lfloor 2f\left(\frac{1-x}{x}\right) - f(x-1) \right\rfloor$$
$$= 2x + \frac{1}{x}$$
$$\Rightarrow 3f(x-1) = 2x + \frac{1}{x}$$

Now, replacing x by x+1, we get [to generate f(x)]

$$3f[(x+1)-1] = 2(x+1) + \frac{1}{(x+1)}$$
  
∴  $f(x) = \frac{1}{3} \left( 2(x+1) + \frac{1}{(x+1)} \right)$   
=  $\frac{2(1+x)^2 + 1}{3(1+x)}$ 

43. (B)

Term independent of x in 
$$\left[ (1+x) \left( \frac{1-x}{x} \right) \right]^{2n}$$
  
=Term independent of x in  $(1+x)^{2n} \left( \frac{1-x}{x} \right)^{2n}$   
=Term independent of x in  $\frac{(1+x)^{2n} (1-x)^{2n}}{x^{2n}}$   
=Coefficient of x<sup>0</sup> in  $\frac{(1-x^2)^{2n}}{x^{2n}}$ 



=Coefficient of 
$$x^{2n}$$
 in  $(1-x^2)^{2n}$   
=Coefficient of  $x^{2n}$  in  $\sum_{r=0}^{2n} {}^{2n}C_r (-x^2)^r$   
= $(-1)^{n-2n}C_n$ 

44.

(B)

Let 
$$S = \sum_{k=1}^{n} \frac{6^{k}}{(3^{k} - 2^{k})(3^{k+1} - 2^{k+1})}$$

Kth term of the above summation is given by

$$T_{k} = \frac{6^{k}}{(3^{k} - 2^{k})(3^{k+1} - 2^{k+1})}$$
$$= \frac{3^{k} \times 2^{k}}{(3^{k} - 2^{k})(3^{k+1} - 2^{k+1})}$$
$$= \frac{3^{k} \times 2^{k}(3 - 2)}{(3^{k} - 2^{k})(3^{k+1} - 2^{k-1})}$$

$$\begin{split} &= \frac{3^{k} \times 2^{k} \left(3-2\right)}{\left(3^{k}-2^{k}\right) \left(3^{k+1}-2^{k+1}\right)} \\ &= \frac{3^{k} \left(3^{k+1}-2^{k+1}\right)-3^{k+1} \left(3^{k}-2^{k}\right)}{\left(3^{k}-2^{k}\right) \left(3^{k+1}-2^{k+1}\right)} \\ &\left(\because 3^{k}2^{k} \left(3-2\right)=3^{k+1}2^{k}-3^{k}2^{k+1}=3^{k} \left(3^{k+1}-2^{k+1}\right)-3^{k+1} \left(3^{k}-2^{k}\right)\right) \\ &\Rightarrow T_{k} = \frac{3^{k}}{3^{k}-2^{k}}-\frac{3^{k+1}}{3^{k+1}-2^{k+1}} \\ &\therefore S = \sum_{k=1}^{n} \frac{6^{k}}{\left(3^{k}-2^{k}\right) \left(3^{k+1}-2^{k+1}\right)} \\ &\therefore \lim_{n\to\infty} \left[\sum_{k=1}^{n} \frac{6^{k}}{\left(3^{k}-2^{k}\right) \left(3^{k+1}-2^{k+1}\right)}\right] \\ &= \lim_{n\to\infty} \left(\frac{3}{3-2}-\frac{3^{n+1}}{3^{n+1}-2^{n+1}}\right) \\ &= 3-\lim_{n\to\infty} \left(\frac{3^{n+1}}{3^{n+1}-2^{n+1}}\right) \\ &= 3-\lim_{n\to\infty} \left[\frac{1}{1-\left(\frac{2}{3}\right)^{n+1}}\right] = 3-\frac{1}{1-0}2 \end{split}$$

CENTERS: MUMBAI / DELHI / PUNE / NASHIK / AKOLA / GOA / JALGAON / BOKARO / AMARAVATI / DHULE # 3



Alternatively

The general term is given by

$$T_k = \frac{6^k}{\left(3^k - 2^k\right) \left(3^{k+1} - 2^{k+1}\right)}$$

On dividing numerator and denominator  $2^{2k+1}$ , we get





45. (D)  
Probability exactly one of A and B occurs  

$$P(E_{1}) = P(A \cap \overline{B}) \cup P(\overline{A} \cap B)$$

$$= P(A) + P(B) - 2P(A \cap B)$$
Probability that exactly one of B and C occurs,  

$$P(E_{2}) = (B \cap \overline{C}) \cup (\overline{B} \cap C)$$

$$= P(B) + P(C) - 2P(B \cap C)$$
Probability that exactly one of C and A occurs,  

$$P(E_{3}) = (C \cap \overline{A}) \cup (\overline{C} \cap A)$$

$$= P(A) + P(C) - 2P(A \cap C)$$
Probability that all of A,B and C occurs,  

$$P(E_{4}) = P(A \cap B \cap C)$$
Now, probability that atleast of A,B and C occurs  

$$P(E_{5}) = P(A \cup B \cup C)$$

$$= P(A) + P(B) + P(C) - P(A \cap B)$$

$$-P(C \cap B) - P(A \cap C) + P(A \cap B \cap C)$$

$$= \frac{P(E_{1}) + (E_{2}) + P(E_{3})}{2} + P(E_{4})$$

$$= \frac{1}{2} + \frac{1}{9} = \frac{11}{18}$$

(B)

Since, the  $\triangle ABC$  is a right angled isosceles triangle, with right angle at  $z_1$  and AB = AC, hence it follows that





$$\Rightarrow \arg\left(\frac{z_1 - z_3}{z_1 - z_2}\right) = \frac{\pi}{2}$$
$$\Rightarrow \frac{z_1 - z_3}{z_1 - z_2} = \left|\frac{z_1 - z_3}{z_1 - z_2}\right| e^{\left(\frac{i\pi}{2}\right)}$$
$$\Rightarrow \frac{z_1 - z_3}{z_1 - z_2} = i$$
$$\Rightarrow \left(\frac{z_1 - z_3}{z_1 - z_2}\right) = i^2 = -1$$
$$\Rightarrow (z_1 - z_3)^2 + (z_1 - z_2)^2 = 0$$
$$\Rightarrow 2z_1^2 + z_2^2 + z_3^2 = 2z_1(z_2 + z_3)$$

Since, the  $\triangle ABC$  is a right angled at  $z_1$ , hence its circumcentre  $(z_0)$  is the mid-point of its hypotenuse.

$$\Rightarrow z_0 = \frac{z_2 + z_3}{2}$$
$$\Rightarrow 2z_1^2 + (z_2 + z_3)^2 = 2\sum z_1 z_2$$
$$\Rightarrow 2\sum z_1 z_2 = 2z_1^2 + 4z_0^2$$
$$\Rightarrow \sum z_1 z_2 = z_1^2 + 2z_0^2$$

#### 47. (A,B,D)

**Concepts Involved** Binomial theorem and Mathematical induction (A) Since n is an even integer. Let us assume that n = 2m, where r

(A) Since, n is an even integer. Let us assume that 
$$n = 2m$$
, where  $m \in N$   
 $(\sqrt{2}-1)^{2m} = {}^{2m} C_0 (\sqrt{2})^{2m} - {}^{2m} C_1 (\sqrt{2})^{2m-1} + {}^{2m} C_2 (\sqrt{2})^{2m-2} - \dots + (-1)^{2m}$   
 $= \left( {}^{2m} C_0 (\sqrt{2})^{2m} + {}^{2m} C_2 (\sqrt{2})^{2m-2} + {}^{2m} C_4 (\sqrt{2})^{2m-4} \dots \right)$   
 $- \left( {}^{2m} C_1 (\sqrt{2})^{2m-1} + {}^{2m} C_3 (\sqrt{2})^{2m-3} + {}^{2m} C_5 (\sqrt{2})^{2m-5} + \dots \right)$   
 $= \left( {}^{2m} C_0 (2)^m + {}^{2m} C_2 (2)^{m-1} + {}^{2m} C_4 (2)^{m-2} + \dots \right)$   
 $- \sqrt{2} \left( {}^{2m} C_1 (2)^{m-1} + {}^{2m} C_3 (2)^{m-2} + {}^{2m} C_5 (2)^{m-3} + \dots \right)$ 

$$= A - B\sqrt{2} \text{ where A and } B \in I^{+}$$
(B) Since, n is an odd integer. Let us assume that  $n = 2m + 1$ , where  $m \in N$   
 $(\sqrt{2} - 1)^{2m+1} = {}^{2m+1} C_0 (\sqrt{2})^{2m+1} = {}^{2m+1} C_1 (\sqrt{2})^{2m}$   
 $+ {}^{2m+1} C_2 (\sqrt{2})^{2m-1} - \dots + (-1)^{2m+1}$   
 $= \left[ {}^{2m+1} C_0 (\sqrt{2})^{2m+1} + {}^{2m+1} C_2 (\sqrt{2})^{2m-1} + {}^{2m+1} C_4 (\sqrt{2})^{2m-3} + \dots \right]$ 



$$\begin{split} &-\left[ {}^{2m+1}C_1 \left( \sqrt{2} \right)^{2m} + {}^{2m+1}C_3 \left( \sqrt{2} \right)^{2m-2} + {}^{2m+1}C_5 \left( \sqrt{2} \right)^{2m-4} + \dots \right) \right] \\ &= \sqrt{2} \left[ {}^{2m+1}C_0 \left( 2 \right)^m + {}^{2m+1}C_2 \left( 2 \right)^{m-1} + {}^{2m+1}C_4 \left( 2 \right)^{m-2} + \dots \right) \right] \\ &= A\sqrt{2} - B, \text{ where A and B } \in I^+ \\ \text{(C) This is false} \\ \text{(D) For n } = 1, \left( \sqrt{2} - 1 \right)^n = \sqrt{2} - 1 = \sqrt{2} - \sqrt{1} \\ \text{ For n } = 2 \\ &\left( \sqrt{2} - 1 \right)^n = \left( \sqrt{2} - 1 \right)^2 = 3 - 2\sqrt{2} = \sqrt{9} - \sqrt{8} \\ \text{For n } = 3, \left( \sqrt{2} - 1 \right)^n = \left( \sqrt{2} - 1 \right)^3 = 5\sqrt{2} - 7 \\ &= \sqrt{50} - \sqrt{49} \\ \text{For n } = m, \text{let} \left( \sqrt{2} - 1 \right)^m = \sqrt{N} - \sqrt{(N-1)} \text{ is true} \\ \text{For n } = m + 1 \\ &\left( \sqrt{2} - 1 \right)^n = \left( \sqrt{2} - 1 \right)^{m+1} = \left( \sqrt{2} - 1 \right) \left( \sqrt{2} - 1 \right)^n \\ &= \left( \sqrt{2N} - \sqrt{N} - \sqrt{2(N-1)} + \sqrt{N-1} \right) \\ &= \left( \sqrt{2N} + \sqrt{N-1} \right) = \left[ \sqrt{N} + \sqrt{2(N-1)} \right] \\ &= \sqrt{3N - 1 + 2\sqrt{2N(N-1)}} \\ &= \sqrt{M} - \sqrt{M-1} \\ \text{But what is the gurantee that} \\ M = 3N - 1 + 2\sqrt{2N(N-1)} \text{ is a positive integer?} \end{split}$$

Now, to prove that M is also an integer, we have to prove that  $\sqrt{2N(N-1)}$  is also a positive integer.

$$M = 3N - 1 + 2\sqrt{2N(N-1)}$$
  
Also,  $\sqrt{N} - \sqrt{(N-1)} = (\sqrt{2} - 1)^{m}$   
= A + B $\sqrt{2}$   
Where A, Bm  $\in$  I<sup>+</sup>  
On squaring both sides, we get  
 $2N - 1 + \sqrt{2}\sqrt{N(N-1)} = A^{2} + 2B^{2} + 2\sqrt{2}AB$   
On comparing rational and irrational parts, we get  
 $\sqrt{N(N-1)} = \sqrt{2}AB$   
 $\Rightarrow \sqrt{2N(N-1)} = 2AB(\in I^{+})$ 





$$\therefore \left(\sqrt{2} - 1\right)^n = \sqrt{N} - \sqrt{(N-1)} \text{ is true for } n = m+1$$
  
$$\Rightarrow \left(\sqrt{2} - 1\right)^n = \sqrt{N} - \sqrt{(N-1)} \text{ is true for all natural numbers by mathematical induction.}$$

48. (A,B)  

$$\sum_{r=1}^{n} (-1)^{r-1} \left( \frac{r^{2} + 3r + 1}{r^{3} + 2r^{2} + r} \right) C_{r}$$

$$= \sum_{r=1}^{n} (-1)^{r-1} \left( \frac{C_{r}}{r} \right) + \sum_{r=1}^{n} (-1)^{r-1} \left( \frac{C_{r}}{(r+1)^{2}} \right) \dots \dots (i)$$
Now,  $\frac{1 - (1 - x)^{n}}{x} = C_{1} - C_{2}x + C_{3}x^{2} - \dots + (-1)^{n-1}C_{n}x^{n-1}$ 
On integrating both the sides from  $x = 0$  to  $x = 1$ , we get
$$\int_{0}^{1} \frac{1 - (1 - x)^{n}}{1 - (1 - x)} dx = \int_{0}^{1} \left[ C_{1} - C_{2}x + C_{3}x^{2} - \dots + (-1)^{n-1}C_{n}x^{n-1} \right] dx$$

$$\Rightarrow \int_{0}^{1} \frac{1 - (x)^{n}}{1 - (x)} dx = \left[ C_{1} - C_{2}\frac{x^{2}}{2} + C_{3}\frac{x^{3}}{3} - \dots + (-1)^{n-1}C_{n}\frac{x^{n}}{n} \right]_{0}^{1}$$

$$\Rightarrow \int_{0}^{1} (1 + x + x^{2} + \dots + x^{n-1}) dx = \left[ C_{1} - \frac{C_{2}}{2} + \frac{C_{3}}{3} - \dots + (-1)^{n-1}C_{n}\frac{x^{n}}{n} \right]_{0}^{1}$$

$$\Rightarrow 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{r=1}^{n} (-1)^{r-1}\frac{C_{r}}{r}$$

$$\Rightarrow \sum_{r=1}^{n} (-1)^{r-1}\frac{C_{r}}{r} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \qquad \dots \dots (ii)$$
Now, by considering,
$$1 - (1 - x)^{n+1} = C_{n} - C_{1}x + C_{2}x^{2} + \dots + (-1)^{n}C_{n}x^{n}$$

$$\frac{1}{x(n+1)} = C_0 - \frac{1}{2}x + \frac{2}{3}x^2 + \dots + (-1)^n \frac{n}{n+1}$$

$$= \frac{1}{n+1} \int_0^1 \frac{1 - (1-x)^{n+1}}{1 - (1-n)} dx$$

$$= C_0 - \frac{C_1}{2^2} + \frac{C_3}{3^3} - \dots + (1)^n \frac{C_n}{(n+1)^2}$$

$$\Rightarrow \frac{1}{(n+1)} \left[ 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1} \right] = 1 - \frac{C_1}{2^2} + \frac{C_2}{3^2} - \dots + (-1)^n \frac{C_n}{(n+1)^2}$$

$$\Rightarrow - \frac{1}{(n+1)} \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = \frac{C_1}{2} - \frac{C_2}{3^2} + \frac{C_3}{4^2} - \dots + (-1)^{n-1} \frac{C_n}{(n+1)^2}$$

$$\Rightarrow \frac{-1}{(n+1)} \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = \sum_{r=1}^n \frac{(-1)^{r-1}C_r}{(r+1)^2}$$



$$\Rightarrow \sum_{r=1}^{n} \frac{(-1)^{r-1} C_r}{(r+1)^2} = \frac{-1}{(n+1)} \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \quad \dots \dots \dots (iii)$$

From Eqs. (i), (ii) and (iii), we get

$$\sum_{n=1}^{r} (-1)^{r-1} \left( \frac{r^2 + 3r + 1}{r^3 + 2r^2 + r} \right) C_r = \left( \frac{n}{n+1} \right) \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$$

On substituting various values of n, we get the option (A) is correct and option(B) is correct.

49. (A)

Concept Involved If a matrix A is orthogonal, then it satisfies  $AA^{T} = A^{T}A = I$ Given that,  $Q = PAP^{T}$ On multiplying both sides by  $P^T$  from LHS, we get  $\mathbf{P}^{\mathrm{T}}(\mathbf{Q}) = \mathbf{P}^{\mathrm{T}}(\mathbf{P}\mathbf{A}\mathbf{P}^{\mathrm{T}})$  $\Rightarrow P^{T}Q = P^{T}PAP^{T}$  $\Rightarrow \mathbf{P}^{\mathrm{T}}\mathbf{Q} = \mathbf{A}\mathbf{P}^{\mathrm{T}} \qquad (\because \mathbf{P}^{\mathrm{T}}\mathbf{P} = \mathbf{I})$ Now, multiplying both sides by P from RHS, we get  $\Rightarrow P^{T}OP = AP^{T}P$  $\Rightarrow P^{T}QP = A$ Now,  $A = P^T Q P$  $\Rightarrow A^2 = (P^T Q P)(P^T Q P)$  $= P^{T} O P P^{T} O P$  $= P^{T}Q(PP^{T})QP = P^{T}Q^{2}P$ Similarly, we can say that  $A^{3} = P^{T}Q^{3}P, A^{4} = P^{T}Q^{4}P....A^{2005}$  $= \mathbf{P}^{\mathrm{T}} \mathbf{O}^{2005} \mathbf{P}$  $\Rightarrow \mathbf{P}^{\mathrm{T}}\mathbf{Q}^{2005}\mathbf{P} = \mathbf{A}^{2005} = \begin{bmatrix} 1 & 2005\\ 0 & 1 \end{bmatrix}$ Explanation  $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$  $\Rightarrow \mathbf{A}^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$  $\Rightarrow A^{3} = AA^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$  $\Rightarrow A^{2005} = \begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ Alternatively



On multiplying both sides by  $P^T$  from LHS, we get  $\mathbf{P}^{\mathrm{T}}(\mathbf{Q}) = \mathbf{P}^{\mathrm{T}}(\mathbf{P}\mathbf{A}\mathbf{P}^{\mathrm{T}})$  $\Rightarrow P^{T}A = P^{T}PAP^{T}$  $\Rightarrow P^{T}Q = AP^{T}$  $(:: \mathbf{P}^{\mathrm{T}}\mathbf{P} = \mathbf{I})$ Hence, required matrix  $\mathbf{P}^{\mathrm{T}}\mathbf{Q}^{2005}\mathbf{P} = \left(\mathbf{P}^{\mathrm{T}}\mathbf{Q}\right)\mathbf{Q}^{2004}\mathbf{P}$  $= \left( A P^{\mathrm{T}} \right) Q^{2004} P \left( \because P^{\mathrm{T}} Q = A P^{\mathrm{T}} \right)$  $= \mathbf{A}\mathbf{P}^{\mathrm{T}}\mathbf{O}^{2004}\mathbf{P}$ Proceeding in similar way, we can write  $P^{T}Q^{2005}P = AP^{T}Q^{2004}P$  $= \mathbf{A}^2 \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{2003} \mathbf{P}$  $= A^{3}P^{T}Q^{2002}P$ =.....  $= A^{2004} P^T O P$  $= A^{2004} \left( A P^T \right) P$  $= A^{2005}$  $= \begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ 

50.

(C)

$$\begin{split} & \left(1+2x+2x^2\right)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_{2n}x^{2n} \qquad \qquad \dots \dots (i) \\ & \text{Replacing } x \to -x \text{, we get} \\ & \left(1-2x+2x^2\right)^n = a_0 - a_1x + a_2x^2 - a_3x^3 + \dots + a_{2n}x^{2n} \qquad \qquad \dots \dots (ii) \\ & \text{On multiplying Eqs. (i) and (ii), we get} \\ & \left(1+2x+2x^2\right)^n \left(1-2x+2x^2\right)^n \\ & = \left(a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_{2n}x^{2n}\right) \\ & \left(a_0 - a_1x + a_2x^2 - a_3x^3 + \dots + a_{2n}x^{2n}\right) \\ & \text{Required sum is } S = a_0a_{2n} - a_1a_{2n-1} + a_2a_{2n-2} - \dots + a_{2n}a_0 \\ & = \text{Coefficient of } x^{2n} \text{ in} \\ & \left[\left(1+2x+2x^2\right)\left(1-2x+2x^2\right)\right]^n \\ & = \text{Coefficient of } x^{2n} \text{ in } \left[\left(1+2x^2\right)^2 - \left(2x^2\right)\right]^n \\ & = \text{Coefficient of } x^{2n} \text{ in } \left(1+4x^4\right)^n \\ & = ^n C_{n/2} \times \left(2^n\right) \end{split}$$



### 51. (D)

Given function is  $h(x) = \sin^{-1} x - \cos^{-1} \sqrt{1 - x^2}$ , Now,  $\cos^{-1} \sqrt{1 - x^2} = \begin{cases} \sin^{-1} x, \text{ if } x > 0 \\ -\sin^{-1} x, \text{ if } x < 0 \end{cases}$   $\therefore h(x) = \begin{cases} 2\sin^{-1} x, x < 0 \\ 0, x \ge 0 \end{cases}$  $\therefore h(x)$  is a non-decreasing function.

# 52. (B,C)

Let us assume that the given directrices are  $L_1: 3x + 4y + 10 = 0$  and  $L_2: 3x + 4y - 10 = 0$  $d(P, L_1) = distance$  between P and  $L_1$ 



$$d(P,L_2)$$
 = distance between P and  $L_2$ 

$$=\left|\frac{18+32+10}{5}\right|=12$$

Hence, P is closer to the directrix 3x + 4y - 10 = 0

$$\Rightarrow$$
 ae  $-\frac{a}{e} = 8$  and ae  $+\frac{a}{e} = 12$ 

On solving , we get ae = 10 and  $\frac{a}{e} = 2$ 

$$\Rightarrow$$
 CP = ae = 10  
On dividing the equations

ae = 10 and 
$$\frac{a}{e} = 2$$
, we get  
 $\frac{ae}{a/e} = \frac{10}{2} \Longrightarrow e^2 = 5 \Longrightarrow e = \sqrt{5}$ 

53. (C)

Given function are as 
$$f: A \to B$$
,  $f(x) = \sin^{-1}\left(\frac{[x]}{\{x\}}\right)$  and  $g: C \to D$ ,  $g(x) = \cos^{-1}\left(\frac{[x]}{\{x\}}\right)$ 



finding the domains of f(x) and g(x), we proceed in the following manner. Domain of  $y = \sin^{-1} x$ and  $y = \cos^{-1} x$  is [-1,1]

$$\therefore -1 \le \frac{\left[x\right]}{\left\{x\right\}} \le 1$$

$$\Rightarrow \left|\frac{\left[x\right]}{\left\{x\right\}}\right| \le 1$$

$$\Rightarrow \left[\left[x\right]\right] \le \left\{x\right\}$$

$$\Rightarrow x \in (0,1)$$

$$\Rightarrow A, C = (0,1)$$

$$\Rightarrow A \cup C = (0,1)$$

#### 54. (D)

Given lines are  $\frac{x-1}{1} = \frac{y+3}{-k} = \frac{z-1}{k}$ And  $\frac{2x}{1} = \frac{y-1}{1} = \frac{z-2}{-1}$ Rearranging the given equations, we get  $\frac{x-1}{1} = \frac{y+3}{-k} = \frac{z-1}{k}$ And  $\frac{x-0}{1} = \frac{y-1}{2} = \frac{z-2}{-2}$ 

If the above given two lines are coplanar, then the vectors (i-4j-k), (i-kj+kk) and (i+2j-2k) must be coplanar

$$\therefore \begin{vmatrix} 1 & -4 & -1 \\ 1 & -k & k \\ 1 & 2 & -2 \end{vmatrix} = 0$$

Applying the operations  $R_1 \rightarrow R_1 - R_3$  and  $R_2 \rightarrow R_2 - R_3$ , we get

$$\begin{vmatrix} 0 & -6 & 1 \\ 0 & -k-2 & k+2 \\ 1 & 2 & -2 \end{vmatrix} = 0$$

Now, expanding the above determinant along C<sub>1</sub>, we get

$$0 - 0 + 1(-6k + 12 + k + 2) = 0$$
  
∴ k = -2

55.

**(B)** 

$$|\operatorname{adj}(\operatorname{adj} A)| = |\operatorname{adj} A|^{n-1}$$
$$= \left[ |A|^{(n-1)} \right]^{n-1} = |A|^{(n-1)^2}$$
$$\therefore |\operatorname{adj}(\operatorname{adj} C)| = |C|^{(3-1)^2}$$



$$= |\mathbf{C}|^4 = (-1)^4 = 1$$

**(B)** 

$$|\operatorname{adj}(\operatorname{CB})| = |\operatorname{CB}|^{2}$$
$$= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{bmatrix} \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{bmatrix} \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} (-1) \times 24 \end{bmatrix}^{2} = 24^{2}$$

57.

(1)

The system of homogenous equations  $\begin{cases} a_1x + b_1y + c_1z = 0\\ a_2x + b_2y + c_2z = 0\\ a_3x + b_3y + c_3z = 0 \end{cases}$  will have a non- trivial solution, if

determinant of coefficients is equal to zero, i.e.,

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

If the given system of homogenous equations has a non-trivial solution, then determinant of coefficients is equal to zero, i.e.,

$$\Delta = \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} = 0$$

Applying  $R_1 \rightarrow R_1 - R_2$  and  $R_2 \rightarrow R_2 - R_3$ , we get

$$\begin{vmatrix} a-b & a^2-b^2 & 0 \\ b-c & b^2-c^2 & 0 \\ c & c^2 & 1 \end{vmatrix} = 0$$

Taking (a-b) and (b-c) common from  $R_1$  and  $R_2$  respectively, we get

$$(a-b)(b-c) \begin{vmatrix} 1 & a+b & 0 \\ 1 & b+c & 0 \\ c & c^2 & 1 \end{vmatrix} = 0$$
  
Now, expanding along C<sub>3</sub>, we get  
 $(a-b)(b-c)[(b+c)-(a+b)] = 0$   
 $(a-b)(b-c)(c-a) = 0$ 

$$\Rightarrow$$
 a = b or b = c or c = a



Since, a,b and c are in GP Hence, a = b and  $b = c \Rightarrow r = 1$ But c = a  $\Rightarrow r = \pm 1$   $\therefore r = \pm 1$   $\Rightarrow |r| = 1$   $\Rightarrow k = 1$  $\therefore \frac{k+2}{4-k} = \frac{1+2}{4-1} = \frac{3}{3} = 1$ 

58.

(0)

 $|z+(a-ib)| = \sqrt{a^2+b^2} \Rightarrow z$  lies on a circle with centre (-a+ib) (say  $C_1$ ) and radius equal to  $\sqrt{a^2+b^2}$  (say  $r_1$ ) units  $|z| = a^2+b^2+a \Rightarrow z$  lies on a circle (say  $C_2$ ) with center at (-0-0i) (say  $C_2$ ) and radius equal to  $a^2+b^2+1(say r_2)$  units.

Now, the big question is whether the two circles above intersect or not. Distance between their centres

$$C_{1}C_{2} = |(-a+ib)-(-0-0i)| = \sqrt{a^{2}+b^{2}}$$
Now,  $a^{2} + b^{2} + 1 - 2\sqrt{a^{2}+b^{2}} = (\sqrt{a^{2}+b^{2}} - 1)^{2}$ 

$$\Rightarrow a^{2} + b^{2} + 1 - 2\sqrt{a^{2}+b^{2}} > 0$$

$$\Rightarrow (a^{2} + b^{2} + 1) - \sqrt{a^{2}+b^{2}} > \sqrt{a^{2}+b^{2}}$$

$$\Rightarrow r_{2} - r_{1} > C_{1}C_{2} \Rightarrow C_{1}C_{2} < r_{2} - r_{1}$$

$$\therefore Circle with centre C lies completely inside the set of the set of$$

 $\therefore$  Circle with centre  $C_1$  lies completely inside the circle with centre  $C_2$ .

The given circles don't intersect.

The number of points of intersection are zero Alternatively

$$|z|$$
 can be written as  $|z| = |z + (a - ib) - (a - ib)|$ 

Now, applying triangle's inequality, we get

$$|z + (a - ib) - (a - ib)| \le |z + a - ib| + |a - ib|$$
  

$$\Rightarrow |z| \le \sqrt{a^2 + b^2} + \sqrt{a^2 + b^2}$$
  

$$\Rightarrow a^2 + b^2 + 1 \le 2\sqrt{a^2 + b^2}$$
  

$$\Rightarrow (\sqrt{a^2 + b^2} - 1)^2 \le 0$$
  
(:: square of a real number cannot be negative.)

 $\sqrt{a^2 + b^2} = 1$  is the only possibility but it is given that  $a^2 + b^2 \neq 1$ .: No real values of a and b are possible.

59.

(1)

LHS = 
$$\frac{2}{1!3!} + \frac{2}{3!11!} + \frac{2}{5!9!} + \frac{1}{7!7!}$$



$$= \frac{1}{14!} \left( 2 \cdot \frac{14!}{1!3!} + 2 \cdot \frac{14!}{3!11!} + 2 \cdot \frac{14!}{5!9!} + \frac{14!}{7!7!} \right)$$
  
=  $\frac{1}{14!} \left( 2^{14}C_1 + 2^{14}C_3 + 2^{14}C_5 + {}^{14}C_7 \right)$   
=  $\frac{1}{14!} \left( {}^{14}C_1 + {}^{14}C_3 + {}^{14}C_5 + {}^{14}C_7 + {}^{14}C_9 + {}^{14}C_{11} + {}^{14}C_{13} \right)$   
=  $\frac{2^{14-1}}{14!} = \frac{2^{13}}{14!} \Rightarrow \frac{2^m}{n!} = \frac{2^{13}}{14!}$   
 $\therefore$  m = 13 and n = 14  
 $\Rightarrow$  n - m = 14 - 13 = 1

60.

Number of ways to draw 1 st pair =  $\binom{n}{C_1} \times \binom{n}{C_1}$ Number of ways to draw 2 nd pair =  $\binom{n-1}{C_1} \times \binom{n-1}{C_1}$ Number of ways to draw 2 rd pair =  $\binom{n-2}{C_1} \times \binom{n-2}{C_1}$ 

. . . . . . . .

(4)

Number of ways to draw last i.e., nth pair =  $\begin{pmatrix} {}^{1}C_{1} \times {}^{1}C_{1} \end{pmatrix}$ 

Combining all the above results, we get

Number of ways to draw n pairs  

$$= {\binom{n}{C_1} \times {\binom{n}{C_1}} {\binom{n-1}{C_1} \times {\binom{n-1}{C_1}} \dots {\binom{2}{C_1} \times {\binom{2}{C_1}} {\binom{1}{C_1} \times {\binom{1}{C_1}}} }$$

$$\Rightarrow {\binom{n}{C_1} \times {\binom{n}{C_1}} {\binom{n-1}{C_1} \times {\binom{n-1}{C_1}} \dots {\binom{2}{C_1} \times {\binom{2}{C_1}} {\binom{1}{C_1} \times {\binom{1}{C_1}}} = 576$$

$$\Rightarrow {\binom{n}{2}} {\binom{n-1}{2}} \dots {\binom{2}{2}} \times {\binom{1}{2}} = {\binom{24}{2}}^2$$

$$\Rightarrow {\binom{n}{2}}^2 = {\binom{24}{2}}^2$$

$$\Rightarrow {\binom{n}{2}}^2 = {\binom{24}{2}}^2$$

$$\Rightarrow {\binom{n}{2}} = {\binom{24}{2}}^2$$



# PART (A) : PHYSICS

#### 1. (B, C)

For the no slipping, there will not be any relative motion So,  $v\!=\!\omega R$ 

Also  $\tau_{net} = l\alpha$ 

Where  $\tau_{net}$  is net torque

l is moment of inertia and  $\alpha$  is angular acceleration. The forces on different surfaces are shown below



Here in above diagram, all the force are shown Where

 $f_1$  = friction between plank and cylinder

 $f_2 =$  friction between cylinder and ground.

 $a_1$  = acceleration of plank and

 $a_2 = acceleration of Cm of cylinder$ 

As, there is no slipping anywhere

$$a_{1} = 2a_{2} \qquad \dots(i)$$

$$a_{1} = \frac{F_{0} - t_{1}}{m} \qquad \dots(ii)$$

$$a_{2} = \frac{f_{1} + f_{2}}{M} \qquad \dots(iii)$$

$$\therefore \tau_{net} = l\alpha \Rightarrow \alpha = \frac{\tau_{net}}{l}$$

$$\Rightarrow \alpha = \frac{(f_{1} - f_{2})R}{l} = \frac{(f_{1} - f_{2})R}{\frac{1}{2}MR^{2}}$$

$$= \frac{2(f_{1} - f_{2})}{MR} \qquad \dots(iv)$$

$$a_{2} = R\alpha = \frac{2(t_{1} - t_{2})}{M} \qquad \dots(v)$$
Solving Eqs. (i) and (v) we get
$$a_{1} = \frac{BF_{0}}{3M + 8m}$$

$$\Rightarrow a^{2} = \frac{4F_{0}}{3M + 8m} \Rightarrow f_{2} = \frac{MF_{0}}{3M + 8m}$$



# 2. (A, B)

This question can be solved, If right hand side chamber is assumed open, so that its pressure remains constant even, if the positon shifts towards right

$$pV = nRT$$
$$\Rightarrow P \propto \frac{T}{V}$$

Temperature is made three times and volume is doubled

$$p_{2} = \frac{3}{2}p_{1}$$
Further  

$$x = \frac{\Delta V}{A} = \frac{V_{2} - V_{1}}{A} = \frac{2V_{1} - V_{1}}{A} = \frac{V_{1}}{A}$$

$$p_{2} = \frac{3p_{1}}{2} = p_{1} + \frac{kx}{A}$$

$$\Rightarrow kx = \frac{p_{1}A}{3}$$
Energy of spring  

$$\frac{1}{2}kx^{2} = \frac{p_{1}V_{1}}{4}$$
Also,  $\Delta U = nC_{V}\Delta T$   

$$= \frac{p_{1}V_{1}}{RT_{1}} \times \frac{3}{2}R \times (3T_{1} - T_{1})$$

$$= 3p_{1}v_{1}$$

3. (A)

As, shown in the figure e For  $0 \le x \le a$   $\phi = Bx^2$   $\therefore$  Induced emf,  $\varepsilon = -\frac{d\phi}{dt} = -2Bx \cdot \frac{dx}{dt}$   $\varepsilon = -\frac{d\phi}{dt} = -2Bx \cdot \frac{dx}{dt}$ Or  $\varepsilon = -2Bx \cdot v$ At  $x = 0, \varepsilon = 0$ At  $x = a, \varepsilon = -2Bav$ At x = 2a, ge = 0 as  $\phi = constant$ (i.e. when the loop starts coming out from the field after sometime, then  $\phi = B(2a - x_1^2)$   $\therefore \varepsilon = -2B(2a - x)(-v)$ Or  $\varepsilon = 2B(2a - x) \cdot v$ At  $x = 0, \varepsilon = 4BaV$ Hence (a) is the correct option



## 4. (B, C)

Motion of  $m_2$  starts, when  $kx = \mu \cdot m_2 g$ , when x = extension in the spring.  $x = \mu m_2 g / k$ The minimum force will be such that  $m_1$  has no kinetic energy. Applying, work-energy principle on body of  $m_1$ .

$$\int_{0}^{x} (F_{\min} - \mu m_{1}g - kx)dx = 0$$

$$\Rightarrow F_{\min}x - \mu m_{1}gx - \frac{1}{2}kx^{2} = 0$$

$$\Rightarrow F_{\min} = \left[\mu m_{1}g + \frac{1}{2}kx\right]$$

$$= \left[\mu m_{1}g + \frac{\mu m^{2}g}{2}\right]$$

$$\Rightarrow F_{\min} = \mu m_{1}g + \frac{\mu m_{2}g}{2}$$

5. (A, C)

In the given figure, Process AB is an isobaric process During the process  $V \propto T$ But  $pV = nRT \Rightarrow pV \propto T$ 

Thus, during this process, pressure P remains constant.

In process BC, temperature decreases, while volume remains constant.

Process CA is an isothermal process. Hence. On T\_V diagram process AB will be a straight line parallel to the T-axis, during which temperature increase. Process BC will be a straight line passing through origin. During which temperature and process CA will be a straight line parallel to the V-axis. Hence, option (a) is correct.

On p-V diagram, process AB will be a straight line parallel to the V-axis. Process BC will be a straight line parallel to the p-axis and CA will be a rectangular hyperbola.

Hence (C) is the correct option.

6. (B, C)  
Use relations, 
$$Q = Q_0(1 - e^{-t/RC})$$
 and  $i = i_0 e^{-t/RC}$ 

7. (3.00)

$$T \propto r^{3/2} \Rightarrow r^2 = \left(\frac{T_2}{T_1}\right)^{2/3} .r_1$$
$$= \left(\frac{8}{1}\right)^{2/3} \times 10^4 = 4 \times 10^4 \text{ km}$$
Now,  $v_1 = \frac{2\pi \times r_1}{T_1} = 2\pi \times 10^4 \text{ km / h}$ and  $v_2 = \frac{2\pi r_2}{T_2} = \pi \times 10^4 \text{ km / h}$ 

So  $\omega_r$  = angular speed of S<sub>2 relative to</sub> S<sub>1</sub>



$$=\left|\frac{\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{r}_2 - \mathbf{r}_1}\right| = 3.0 \times 10^{-4} \,\mathrm{rad} \,/\,\mathrm{s}$$

8. (5.00)

For the moment of inertia of the disc of mass dm at distance x about the given axis, we will use



Density of spherical segment is

$$\rho = \frac{M}{V} = \frac{M}{\int_{\frac{R}{2}}^{R} \pi y^2 dx} = \frac{M}{\int_{\frac{R}{2}}^{R} \pi (R^2 - x^2) dx}$$
$$\Rightarrow \rho = \frac{M}{\frac{5\pi R^3}{24}} = \frac{24M}{5\pi R^3}$$

Consider a small disc of radius y and thickness dx as shown in figure.

Mass of small disc,  $dm = \rho . \pi y^2 dx$ . Moment of inertia of disc about O, X –axis

$$dl = \frac{1}{2} dm.y^{2} dl$$
$$dl = \frac{1}{2} \rho \pi y^{2} dx \times y^{2} = \frac{\rho \pi}{2} y^{4} dx$$

Total moment of inertia of segment of sphere is

$$I = \int dl = \frac{\rho \pi}{2} \int_{\frac{R}{2}}^{R} y^{4} dx$$

$$I = \frac{\rho \pi}{2} \int_{\frac{R}{2}}^{R} (R^{2} - x^{2})^{2} dx$$

$$= \frac{\rho \pi}{2} \int_{\frac{R}{2}}^{R} (R^{4} - 2R^{2}x^{2} + x^{4}) dx$$

$$i = \frac{24M}{5\pi R} \times \frac{\pi}{2} \times \left[ R^{4}x - \frac{2R^{2}x^{3}}{3} + \frac{x^{5}}{5} \right]_{R/2}^{R}$$



$$= \frac{24M}{5\pi R^{3}} \times \frac{\pi}{2} \times \frac{53R^{5}}{480} l = \frac{53}{100} MR^{2}$$
$$I = \frac{53}{200} MR^{2} = \frac{53mR^{2}}{40x}$$
$$\Rightarrow x = 5$$

9. (5.00)

Here, we have to use the concept of flux as well as current. We will also use the relation



Sphere

 $dV = -E \cdot dr$ 

Electric field is along the direction of maximum change in potential .The equation used for electric flux is

$$\phi = \oint E.dS$$

Where dS is the surface area.

Consider the diagram shown below

We have considered a surface of thickness dx at distance x. Surface area of the considered surface =  $4\pi x^2$ 

Now we know that

$$E = \frac{dV}{dx} \Rightarrow dV = Edx$$
  
Resistance R =  $\frac{\rho dx}{4\pi x^2}$   
Current I =  $\frac{dV}{R} = \frac{Edx}{\frac{\rho dx}{4\pi x^2}} = \frac{E.4\pi x^2}{\rho}$   
 $\Rightarrow i = \frac{\phi}{\rho} = \frac{10}{2} = 5A$ 

2

ρ

Consider an element of disc at a radius r and having a width dr. Linear velocity at this radius  $= \omega r$ .



Assuming the gap h to be small so that the velocity distribution may be assumed linear



$$\tau = \mu \times \frac{v}{h} = \mu \frac{\omega r}{h}$$
Viscous force, dF =  $\tau \times$  Area  
=  $\tau \times 2\pi / dr$   
Torque dT on the element  
dT = dF × r =  $\tau 2\pi r^2 dr$   
Or d  $\frac{\mu \omega r}{h} \times 2\pi r^2 dr = \frac{2\pi \mu r^3 dr}{h}$   
Total torque  
T =  $\int_{0}^{d/2} \frac{2\pi \mu \omega r^3 dr}{h} = \frac{\mu \pi d^4 \omega}{4h}$ 

Thus x = 4

 $\Rightarrow F+fs = m \times a \qquad \dots \dots (i)$  $\Rightarrow (F-f_s)f = l\alpha \qquad \dots \dots (ii)$ 

For pure rolling  $a = R\alpha$  .....(iii) By solving above three equations, we get

$$f = \frac{3}{7}F$$
  
Put F = 14N  
$$F = \frac{3}{7} \times 14 = 6N$$

12. (4.00)



The condition is possible only when the foci of lens and mirror coincides. Then, only the final image will be at 15 cm left to lens.

So x = 15 + 21 = 36 cm Hence  $\frac{x}{9} = \frac{36}{9} = 4$  cm

13. (6.00)



CENTERS: MUMBAI / DELHI / PUNE / NASHIK / AKOLA / GOA / JALGAON / BOKARO / AMARAVATI / DHULE # 6



14.

Cylinder can perform SHM only till it is partially submersed. When cylinder goes down by x inside the liquid level comes up by x'(say)

(4a - a)x' = xa  

$$\Rightarrow x' = \frac{x}{3}$$
So, the centre of the cylinder goes down by (w.r.t. the liquid surface)  
(x + x') =  $\frac{4}{3}x \le \frac{1}{10}$   

$$\Rightarrow x \le \frac{31}{40} = 6 \text{ cm}$$
(6.00)  
From the given conditions, we get  
 $E_n - E_2 = (10.2 + 17)\text{ eV}$   
= 27.2eV .....(i)  
=  $E_n - E_3 = (4.25 + 5.95)\text{ eV}$   
=10.2 eV .....(ii)  
Subtracting Eq (ii) from Eq. (i) we get  
 $E_3 - E_2 = 17.0\text{ eV}$   
 $Z^2(13.6) \left[\frac{1}{4} - \frac{1}{9}\right]$   
 $Z^2(13.6) \left[\frac{5}{36}\right] = 17.0$   
 $Z^2 = 9 \text{ or } Z = 3$   
From Eq. (i) we get  
 $Z^2(13.6) \left[\frac{1}{4} - \frac{1}{n^2}\right] = 27.2$ 

15.

(3)

As the cart is drawn by a force F the water in the vessel takes up a slant position rising upward at the back wall of the vessel. To prevent water flowing out of the hole H, the acceleration of the vessel should have such a value that it occupies a face area DBH and a width of vessel given by  $\frac{A}{L}$ 

Area of 
$$\Delta DBH = \frac{1}{2}bc$$

 $3^{2}(13.6)\left[\frac{1}{4}-\frac{1}{n^{2}}\right]=27.2$ 

 $\Rightarrow \frac{1}{n^2} = 0.0278 \Rightarrow n^2 = 36 \Rightarrow n = 6$ 

 $\frac{1}{4} - \frac{1}{n^2} = 0.222$ 





17. (C)

In ray 1, there is no phase shift ue to reflection at a soft boundary In ray 2, there is a phase shift of half circle due to reflection from a hard boundary. Now as the thickness t of the air wedge at each point is proportional to the distance from the line contact, we have

 $\frac{t}{x} = \frac{h}{l}$ 

x l





And for destructive interference.  $2t = n\lambda_0$  where n = 0, 1, 2 .....

Combining both equations, we get

$$\frac{2hx}{1} = n\lambda_0$$
  

$$\Rightarrow x = n.\frac{l\lambda_0}{2h}$$
  

$$= n.\frac{0.1 \times 500 \times 10^{-9}}{2 \times 0.02 \times 10^{-3}}$$
  

$$= n (125mm)$$
  
So, successive dark fringes are spaced 1.25 mm apart

18. (A)

If we substitute x = 0, which is the location of contact line of slides, we get n = 0Hence at line of contact a dark fringe appears.

19. (D)



20. (A)

Here, the loop has given a push and left, it means that its speed will keep on decreasing due to magnetic force  $[l(I \times B)]$ . But observed carefully that magnetic retarding force will also decrease with time.

If we just pushed the lop and let it, then due to magnetic foece  $[-II \times B]$ , the speed of the loop will start decreasing

Here  $F = \frac{-vB^2l^2}{R}$  [where R = resistance of the loop]  $\frac{dv}{dt} \propto -v$   $\frac{dv}{dt} = -kv$  [where k = constant]  $\int \frac{dv}{v} = \int -kdt$   $\Rightarrow \log v = -kt$  $\Rightarrow So, graph is$ 



# PART (B) : CHEMISTRY

# 21. (A, B, C)

 $Li^+$  ion being the smallest in size and has the highest charge/size ratio amongst the alkali metal ions, get much more hydrated (i.e. holds more water molecules in tis hydration sphere) than  $Na^+$  ion and the latter gets more hydrated than  $K^+$  ion and so on.

## 22. (A)

Reactant is  $\beta$  – D glucopyranosyl, so the product formed will also be D-glucitol. In this reaction NaBH<sub>4</sub> reduces – CHO group into –CH<sub>2</sub>OH

23. (BCD)





- 24. (A, B, C, D) (A)  $\rightarrow$  Gives free radical substitution (A)  $\rightarrow$  Gives S<sub>E</sub> reaction (B)  $\stackrel{\text{Cl}}{\longrightarrow} \rightarrow$  Gives S<sub>E</sub> reaction (C)  $\stackrel{\text{Cl}}{\longrightarrow} \rightarrow$  Gives substitution reaction (D)  $\stackrel{\text{NO}_2}{\longrightarrow}$ 
  - use  $K_P = K_C R T^{\Delta n}$  to solve this problem  $Se_6(g) \rightleftharpoons 3Se_2(g)$ Initially 0 1 At equilibrium [1 - x]3x Total pressure at equilibrium = 1 - x + 3x = 1 + 2xPressure of Se<sub>2</sub>(P<sub>se2</sub>) =  $\frac{3x}{1+2x} \times p$ Pressure of Se<sub>6</sub>(p<sub>se<sub>6</sub></sub>) =  $\frac{1-x}{1+2x} \times p$  $Kp = \frac{Pse_2^3}{P_{Se_6}} = \frac{\left[\frac{3x}{1+2x} \times p\right]}{p_{se_6}}$ =0.1687 Now,  $K_p = K_C RT^{\Delta n}$  $K_{\rm C} = \frac{K_{\rm P}}{RT^{\Delta n}}$  $\frac{0.1687}{\left(0.0821 \times 973\right)^2}$  $= 0.2645 \times 10^{-4}$
- 26. (A, C, D)

Charge transfer spectrum The charge transfer spectrum is obtained due to transfer of charge from one position to another position as in case of KMnO<sub>4</sub> where charge on oxygen atoms transfer from O to metal. Metal accept electron density in its vacant d-orbital. In Agl,  $I^{\Theta}$  transfers its electron to vacant d-orbital of Ag<sup>+</sup>



#### 27. (6)

SO<sub>3</sub>, XeO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, ClO<sub>4</sub><sup> $\Theta$ </sup>, SO<sub>4</sub><sup>2-</sup>, XeOF<sub>2</sub> have  $d\pi - p\pi$  bonding. This type of bonding is important in the compounds containing third (or higher) period elements (Si, P, S, Cl, etc). These vacant d-orbital from  $(d - p)\pi$  bonding when Si, P, S etc, are bonded with N, O, F which have lone pair electrons in their p-orbitals.

#### 28. (11.36)

At 15 min, let  $\alpha$  be the degree of dissociation of N<sub>2</sub>O<sub>5</sub>.

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$

|           | 2   |    |                    |
|-----------|-----|----|--------------------|
| Initially | 1   | 0  | 0                  |
| At 15 min | 1-α | 2α | $\frac{\alpha}{2}$ |

Now,

$$\frac{\text{rate of effusion of NO}_2}{\text{rate of effusion of O}_2} = \frac{2\alpha}{\frac{\alpha}{2}} \sqrt{\frac{32}{46}}$$

$$= \left(\frac{\text{mole fraction of NO}_2}{\text{mole fraction O}_2}\right)_{\text{outside}}$$

$$\Rightarrow 4\sqrt{\frac{32}{46}} = \frac{0.66}{x_{O_2}}$$

$$x_{O_2} = \frac{0.66\sqrt{46}}{4 \times \sqrt{32}} = 02$$

$$\Rightarrow \text{Mole fraction of N2O5 in mixture collected outside after 15 min =0.14}$$

$$\therefore \frac{r_{N_2O_5}}{r_{NO_2}} = \frac{1-\alpha}{2\alpha} \sqrt{\frac{46}{108}} = \frac{0.14}{0.66}$$

$$\Rightarrow \frac{1-\alpha}{2\alpha} = 0.33 \Rightarrow \alpha = 0.60$$
Now, applying first order kinetics
$$k \times 15 = \ln \frac{1}{1-0.6}$$

$$\Rightarrow k = \frac{1}{15} \ln \frac{5}{2}$$

⇒ k = 0.061  
∴ t<sup>1/2</sup> = 
$$\frac{\ln 2}{0.061}$$
 = 11.36 min

29.

(3)

Total number of chiral centres present in the given molecules are 2. (two)





Hence, the total number of stereoisomers =  $2^2 = 4$ 

30. (-1.27)

From the combustion of benzoic acid, the heat capacity of calorimeter and its content C can be determined as"

$$\frac{3251}{122} \times 0.825 \times 10^{3} \text{ J} = 1.94 \times \text{C}$$
  

$$\therefore \text{ C} = 11332.07 \text{ J} \text{K}^{-1}$$
  
Heat produced in combustion of 0.727 g D-ribose = 0.910 × 11332.07  
= 10312.18 \text{J}  

$$\Rightarrow \text{ Internal energy of combustion reaction is}$$
  

$$\text{C}_{5}\text{H}_{10}\text{O}_{5}(\text{s}) + 5\text{O}_{2}(\text{g}) \rightarrow 5\text{CO}_{2}(\text{g}) + 5\text{H}_{2}\text{O}(\text{l})$$
  

$$\therefore \text{ } \text{ } \text{An}_{g} = 0, \text{ } \text{ } \text{A}\text{H} = \text{ } \text{ } \text{E}$$
  

$$\Rightarrow -2.13 \times 10^{6} = -5(394 + 286) \times 1000$$
  

$$-\text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{O} - \text{ribose}) = -1.27 \times 10^{6} \text{ J}$$

31. (0.05) m mol of HCl dropped

$$=\frac{1}{6}+1.5=0.25$$

$$\Rightarrow \text{mmol of Al reacted} = \frac{1}{-1} \times \text{mmol of HCl}$$

Mass of Al reacted =  $\frac{0.25}{3} \times 10^{-3} \times 27$ 

Volume of Al removed =  $=\frac{0.25 \times 10^{-3}}{2.7 \text{gcm}^{-3}}\text{g} = 83.3 \times 10^{-4} \text{cm}^{-3}$ 

Also 
$$V = \pi r^2 \times \text{thickness}$$
  

$$\Rightarrow r^2 = \frac{8.33 \times 10^{-4} \text{ cm}^3}{3.14 \times 0.1 \text{ cm}}$$

32.

| (4)                 |                                 |
|---------------------|---------------------------------|
| Complex             | EAN $(Z - O. N + 2 \times C.N)$ |
| $K_3[Fe(CN_6]]$     | 26 - + 12 = 35                  |
| $[Ru(CO)_5]$        | 44 - 0 + 10 = 54                |
|                     | (noble gas)                     |
| $[Cr(NH_3)_6]^{3+}$ | 24 - 3 + 12 = 35                |



| $[CO(NH_3)_6]^{3+}$ | 27 - 3 + 12 = 36 |
|---------------------|------------------|
|                     | (noble gas)      |
| $[Ni(NH_3)_6]^{2+}$ | 28 - 2 + 12 = 38 |
| [Fe(CO)5]           | 26-0+10=36       |
|                     | (noble gas)      |
| $[W(CO)_6]$         | 74-0+12=86       |
|                     | (noble gas)      |

33. (4)

The given compound X is twistane. It has four equivalent chiral centres. In the bridged ring compound, certain diastereomers cannot from due to steric reason. So, exists only in two enantiomeric form.

34. (0.79)

$$2Hg + 2Fe^{3+} \rightarrow Hg_2^{2+} + +2Fe^{2+}$$
At equili. Excess  $\frac{10^{-3} \times 5}{100}$   $\frac{10^{-3} \times 95}{100} \frac{10^{-3} \times 95}{100}$ 
At equilibrium  $E_{cell} = 0$ 

$$\therefore 0 = E_{cell}^0 - \frac{0.0591}{2} \log \frac{[Hg_2^{2+}][Fe^{2+}]^2}{[Fe^{3+}]^2}$$

$$\Rightarrow [E_{Hg/Hg^{2+}}^0 + E_{Fe^{3+}/Fe^{2+}}^0]$$

$$- \frac{0.0591}{2} \log \frac{\left(\frac{10^{-3} \times 95}{2 \times 100}\right) \left(\frac{10^{-3} \times 95}{100}\right)}{\left(\frac{10^{-3} \times 5}{100}\right)}$$

$$\Rightarrow E_{Hg/Hg_2^{2+}}^0 = -0.77 + \frac{0.591}{2} \log \frac{(95)^3 \times 10^{-6}}{25 \times 2}$$

$$= (-0.77 + 0.226) = -0.7926V$$

$$\therefore E_{Hg_2^{2+}/Hg}^0 = +0.793V$$

35.

(4)

(i) (A) gives mononromoalkane  $(B) \rightarrow (A)$  is alkene

(ii) Since  ${}^{2gBr_2}$  reacts completely with = 0.70g of (A)  $\therefore 160gBr_2$  reacts completely with  $= \frac{0.70 \times 160}{2}$ = 56gof (A)  $\therefore$  Molecular weight = 56  $C_nH_{2n} = 56$ (Since, compound is alkene) 12n + 2n = 56



n = 4

36. (4)



(\*) n = 2 (\*) No symmetry

So, stereoisomer  $= 2^n = 2^2 = 4$ 

37. (C)



38.





39.



40.

(C)







# PART (C) : MATHEMATICS

41. (A, B, C, D)  
we have  

$$c_1 = x^2 + y^2 + 2x + 4y - 20 = 0$$
  
 $c_2 = x^2 + y^2 + 6x - 8y + 10 = 0$   
Centre of  $c_1 = (-1, -2)$   
And radius  $r_1 = \sqrt{1 + 4 + 20} = 5$   
Centre of  $c_2 = (-3, 4)$   
And radius  $r_2 = \sqrt{9 + 16 - 10} = \sqrt{15}$   
Distance between the centre  
 $d = \sqrt{(-3, 1)^2 + (4 + 2)^2}$   
 $= \sqrt{4 + 36} = \sqrt{40}$   
 $\therefore r_1 + r_2 > d > r_1 - r_2$   
Hence, the circle intersect at two distinct point.  
There are two common tangents  
Also  
 $2g_1g_2 + 2f_1f_2 = 2(1)(3) + 2(2)(-4)$   
 $= -10$   
And  $c_1 + c_2 = -20 + 10 = -10$   
Thus, the two circles are orthogonal  
Length of common tangent  
 $= \sqrt{d^2 - (r_1 - 2)^2}$   
 $= \sqrt{40 - (5 - \sqrt{15})^2} = 5\left(\frac{12}{5}\right)^{1/4}$   
Length of common chord  
 $= \frac{2r_1r_2}{\sqrt{r_1^2 + r_2^2}} = 5\sqrt{\frac{3}{2}}$   
42. (A, B, C)  
We have  
 $f(x + y) = f(x) + f(y) + 3xy(x + y)$  ....(i)  
On differentiating w.r.t. x y as constant  
 $f'(x + y) = f'(x) + 6xy + 3y^2$   
Put  $x = 0$   
 $f'(y) = f'(0) + 3y^2$   
 $f'(y) = 3y^2 - 4 [: f'(0) = 4]$   
On integrating, we get  
 $f(x) = x^3 - 4x + c$   
Now Put  $x = y = 0$  in Eq. (i) we get  
 $f(0) = 0$ 



 $\therefore f(x) = x^{3} - 4x$  f(x) = x(x+2)(x-2) f(x) = 0  $\Rightarrow x(x+2)(x-2) = 0$  x = 0, -2, 2Hence three roots f(x) is passing through (2, 0) and (-1, 3)  $\sqrt{f(x)} = \sqrt{x^{3} - 4x} \text{ is defined}$   $x^{3} - 4x \ge 0 \text{ or } x \in [-2, 0] \cup [2, \infty)$   $\therefore \text{ the domain of } \sqrt{f(x)} \text{ is } [-2, 0] \cup [2, \infty)$ 



From the graph, f(x) is discontinuous and bijective function. It is also not differentiable Hence options a and b are correct

2

$$\lim_{x \to 1^{-}} f(x) = \frac{1}{2}, \lim_{x \to 1^{+}} f(x) = 2$$
  
f(1) = 2  
$$\therefore \min\left(\lim_{x \to 1^{-}} f(x) \lim_{x \to 1^{+}} f(x) \neq f(1)\right)$$
  
Maximum points of discontinuity =

44. (A, B, D)

Since  $\arg\left(\frac{z-1-i}{z}\right)$  is the angle subtended by the chord joining the points O and 1 + i at the circumcentre of the circle |z - 1| = 1So art  $\arg\left(\frac{z-1-i}{z}\right) = -\frac{\pi}{4}$ 





45.

(B)  
We have 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 .....(i)  
And  $(x-1)^2 + y^2 = 1$  .....(ii)  
Solving both the equation, we have  
 $\frac{x^2}{a^2} + \frac{1-(x-1)^2}{b^2} = 1$   
 $\Rightarrow (b^2 - a^2)x^2 + 2a^2x - a^2b^2 = 0$   
For least area, the circle must touch ellipse  
Therefore, D= 0  
 $x + \frac{a^4}{b^2} + \frac{4a^2b^2(b^2 - a^2)}{b^2} = 0$   
 $\Rightarrow a^2 + b^2(b^2 - a^2) = 0$   
 $\Rightarrow a^2 + b^2(-a^2e^2) = 0$   
 $\Rightarrow b = \frac{1}{e}$ 





Also  $a^2 = \frac{b^2}{1-e^2} - \frac{1}{e^2(1-e^2)}$  $\Rightarrow a = \frac{1}{e\sqrt{1 - e^2}}$ Let S be area of the ellipse. Then,  $S=\pi ab=\frac{\pi}{e^2\sqrt{1\!-\!e^2}}$  $=\frac{\pi}{\sqrt{e^4-e^6}}$ The area is minimum if  $f(e) = e^4 - e^6$  is maximum when  $f'(e) = 4e^3 - 6e^5 = 0$  $\Rightarrow e = \sqrt{2/3}$ So, S is the least when  $= e = \sqrt{2/3}$ Therefore the ellipse s  $2x^2 + 6y^2 = 9$ The equation of auxiliary equation is  $x^{2} + y^{2} = 9/2$ Length of latusrectum of ellipse  $=\frac{2b^2}{a}=\frac{2\times 3/2}{3/2}=\sqrt{2}$ 

Foci of ellipse  $(\pm\sqrt{3},0)$ 

46. (BD)

At 
$$x=1$$
  $y=1$   
 $\therefore -1=1+p+q$   
 $p+q=-2$   
Vertex  $\left(-\frac{p}{2}, \frac{-(p^2-4q)}{4}\right)$   
 $\left|\frac{4q-p^2}{4}\right| = \left|\frac{p^2+4q+8}{4}\right|_{min}$   
At  $p=-2$   $q=0$   
Distance = 1

47. (1010)

Let 
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
  
 $\therefore A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$  ....(i)  
 $A^{-2} = A^{-1} \times A^{-1} = \frac{1}{(ad - bc)^2}$ 



.....(ii)

$$\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$\Rightarrow A^{-2} = \frac{1}{(ad - bc)^2} \begin{bmatrix} d^2 + bc & -bd - ba \\ -cd - ac & a^2 + bc \end{bmatrix}$$
$$\Rightarrow tr(A^{-1}) = \frac{a + d}{ad - bc}, tr(A^{-2})$$
$$= \frac{a^2 + 2bc + d^2}{(ad - bc)^2}$$
Now  $(tr(A^{-1}))^2 - tr(A^{-2})$ 
$$= \frac{(a + d)^2}{(ad - bc)^2} - \frac{a^2 + 2bc + d^2}{(ad - bc)^2}$$
$$= \frac{a^2 + 2ad + d^2 - a^2 - 2bc + d^2}{(ad - bc)^2}$$
$$= \frac{2(ad - bc)}{(ad - bc)^2} = \frac{2}{ad - bc}$$
$$\frac{2}{|A|} [\because |A| = ad - bc]$$
$$= \frac{2}{2018} [\because |A| = 2018]$$
$$= \frac{1}{1009}$$
$$\therefore m + n = 1 + 1009 = 1010$$

48.

(0)

We have 
$$f(x) = f(x) = \int_{-1}^{x} \sqrt{4 - t^2} dt$$
 and  $g(x) = \int_{x}^{1} \sqrt{4 + t^2} dt$   
Let  $h(x) = f(x) \cdot g(x)$   
 $\therefore h'(x) = (f(x) \cdot g(x))' = f(x)g'(x) + f'(x)g \cdot (x)$   
 $\Rightarrow h'(x) = -\int_{-1}^{x} \sqrt{4 + t^2} dt \sqrt{4 + x^2} + \sqrt{4 + x^2} \int_{x}^{1} \sqrt{4 + t^2} dt$   
 $\Rightarrow h'(x) = \sqrt{4 + x^2} \left[ -\int_{-1}^{x} \sqrt{4 + t^2} dt + \int_{x}^{1} \sqrt{4 + t^2} dt \right]$   
 $\Rightarrow h'(0) = \sqrt{4 + 0} \left[ \int_{0}^{1} \sqrt{4 + t^2} dt - \int_{-1}^{0} \sqrt{4 + t^2} dt \right]$   
 $\Rightarrow h'(0) = 2 \left[ \int_{0}^{1} \sqrt{4 + t^2} dt - \int_{-1}^{0} \sqrt{4 + t^2} dt \right]$   
 $\Rightarrow h'(0) = 2 \left[ \int_{0}^{1} 4 + t^2 dt - \int_{-1}^{0} \sqrt{4 + t^2} dt \right]$   
 $\Rightarrow h'(0) = 2 \left[ \int_{0}^{1} 4 + t^2 dt + \sqrt{4 + y^2} dy \right]$   
Where  $t = -y \Rightarrow h'(0) = 0$ 

CENTERS: MUMBAI / DELHI / PUNE / NASHIK / AKOLA / GOA / JALGAON / BOKARO / AMARAVATI / DHULE # 5



49. (4)

We have  $|\vec{a}| = |\vec{b}| = |\vec{c}| = \frac{1}{2}$   $\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = \frac{1}{2}$ Also  $(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) = p\vec{a} + q\vec{b} + r\vec{c}$   $\Rightarrow \vec{a}.(\vec{b} \times \vec{c}) = p + q(\vec{a}.\vec{b}) + \vec{r}(\vec{a}.\vec{c})$  $\Rightarrow [\vec{a}.\vec{b}.\vec{c}] = p + \frac{q}{2} + \frac{2r}{2}$  .....(ii)

Similarly taking dot product with vector  $\vec{b}$  we get

$$[\vec{a} \ \vec{b} \ \vec{c}] = \frac{p}{2} + \frac{q}{2} + r \qquad \dots \dots (iii)$$
  
Solving equs. (i) (ii) and (iii) we get  
$$P = r = -q$$
$$\therefore \frac{p^2 + 2q^2 + r^2}{q^2} = \frac{q^2 + 2q^2 + q^2}{q^2} = 4$$

50. (409)

Let N = 
$$\left(81^{\frac{1}{\log_5 9}} + (3)^{\frac{3}{\log_{\sqrt{6}} 3}}\right) \left(\left(\sqrt{7}\right)^{\frac{2}{\log_{25} 7}} - (125)^{\log_{25} 6}\right)$$
  
 $\Rightarrow$  N =  $((3^4)^{\log_9 5} + 3^{\log_3} \left(\sqrt{6}\right)^3 \left(7^{\log_7 25} - 5^{3\log_8 2^6}\right)$   
 $\Rightarrow$  N =  $\left(3^{\log_3 25} + 3^{\log_3 6\sqrt{6}}\right) \left(25 - 6\sqrt{6}\right)$   
 $\Rightarrow$  N =  $\left(25 + 6\sqrt{6}\right) \left(25 - 6\sqrt{6}\right)$   
 $\Rightarrow$  N =  $\left(25 + 6\sqrt{6}\right) \left(25 - 6\sqrt{6}\right)$   
 $\Rightarrow$  N =  $\left(25 - 216 = 409\right)$ 

51. (0)

If 
$$0 < x < \frac{\pi}{2}$$
,  $\int_{-2}^{x} |\cos x| dx = \int_{-2}^{-\pi/2} |\cos x| dx + \int_{-\pi/2}^{x} |\cos x| dx$   

$$= \int_{-2}^{-\pi/2} -\cos x dx + \int_{-\pi/2}^{x} \cos x dx = \int_{-2}^{x} |\cos x| dx = 0$$

$$\Rightarrow |-\sin x|_{-2}^{-\pi/2} + |-\sin x|_{-\frac{\pi}{2}}^{x} = 0$$

$$\Rightarrow 1 - \sin 2 + \sin x + 1 = 0$$

$$\Rightarrow 2 - \sin 2 + \sin x = 0$$

$$\Rightarrow \sin x = \sin 2 - < -1 \text{ not possible}$$

$$\therefore \text{ No solution exist in } \left(0, \frac{\pi}{2}\right)$$
So number of solution =0

52. (30)  
$$p = z\bar{z} + (z-3)(\bar{z}-3) + (z-6i)(\bar{z}+6i)$$



$$=3zz-3(z+z)+9+6(z-z)i+36$$

$$= 3(x^{2} + y^{2}) - 3(2x) + 9 + 6(2iy)i + 36 \begin{cases} \text{let } z = iy \\ \text{then } \overline{z} = x - iy \\ z + \overline{z} = 2x \\ z - \overline{z} = 2iy \end{cases}$$
$$= 3(x^{2} + y^{2}) - 6x + 9 - 12y + 36$$

 $=3[x^{2} + y^{2} - 2x - 4y + 15]$ = 3[(x - 1)<sup>2</sup> (y - 2)<sup>2</sup> +10] For minimum value of p, x = 1, y = 2. Minimum value of p = 3(10) = 30

53. (23)

 $a_1, a_2, a_3, \dots, a_n$  is an odd number not divisible by a prime greater than 5. So,  $a_i(I = 1, 2, 3, \dots, n)$  can be written as  $a_i = 3^{a_5b}$  where a, b are non-negative integer.

Thus, for all 
$$n \in N$$

$$\frac{1}{a_{1}} + \frac{1}{a_{2}} + \frac{1}{a_{3}} + \dots + \frac{1}{a_{n}} < \left(1 + \frac{1}{3} + \frac{1}{3^{2}}\right) \left(1 + \frac{1}{5} + \frac{1}{5^{2}} \dots + \frac{1}{3^{n}}\right) = \frac{1}{a_{1}} + \frac{1}{a_{2}} + \frac{1}{a_{3}} + \dots + \frac{1}{a_{n}} < \left(\frac{1}{1 - \frac{1}{3}}\right) \left(\frac{1}{1 - \frac{1}{5}}\right) = \frac{15}{8}$$
Hence  $\frac{1}{a_{1}} + \frac{1}{a_{2}} + \frac{1}{a_{3}} \dots + \frac{1}{a_{n}}$  is less than  $\frac{15}{8}$   
 $\Rightarrow m + n = 23$ 

54. (6)

Equation of plane containing the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \text{ and } \frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5} \text{ is } \begin{vmatrix} x-1 & y-2 & z-3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = 0$$
  
$$\Rightarrow (x-1)(15-16) - (y-2)(10-12) + z(z-3)(8-9) = 0$$
  
$$\Rightarrow -(x-1) + 2(y-2) - (z-3) = 0$$
  
$$\Rightarrow x - 2y + z = 0 \text{ or } \frac{|d|}{\sqrt{6}} = \sqrt{6}$$
  
$$\Rightarrow |d| = 6$$

55. (96)

We have 
$$I = \lim_{n \to \infty} \left( n^{-\frac{3}{2}} \right) \sum_{r=1}^{6n} \sqrt{r}$$
$$= \lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{6n}}{n\sqrt{n}}$$



$$\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{6n} \sqrt{\frac{r}{n}}$$
$$= \int_{0}^{6} \sqrt{x} dx = \left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{6} = \frac{2}{3} 6\sqrt{6}$$
$$= \sqrt{96} \Longrightarrow \lambda = 96$$

56.

(0)

$$x^{2}f(x) - 2f\left(\frac{1}{x}\right) = g(x) \qquad \dots \dots (i)$$

Replacing x by  $\frac{1}{x}$ , we have

$$\frac{1}{x^{2}}f\left(\frac{1}{x}\right) - 2f(x) = g\left(\frac{1}{x}\right)$$
  
Multiplying by  $2x^{2}$   
 $2f\left(\frac{1}{x}\right) - 4x^{2}f(x) = 2x^{2}g\left(\frac{1}{x}\right)$  ...(ii)

Adding Eqs. (i) and (ii), we get

$$-3x^{2}f(x) = g(x) + 2x^{2}g\left(\frac{1}{x}\right)$$
$$\Rightarrow f(x) = -\left[\frac{g(x) + 2x^{2}g\left(\frac{1}{x}\right)}{3x^{2}}\right]$$
Now,  $f(-x) = -\left[\frac{g(-x) + 2x^{2}g(-1/x)}{3x^{2}}\right]$ 
$$= \left[\frac{g(x) + 2x^{2}g(1/x)}{3x^{2}}\right]$$
$$\therefore f(x) = -f(-x)$$
f(x) is an odd function

f(x) is an odd function But f(x) is given to be an even function  $\therefore$  f(x) =  $0 \forall x \Rightarrow$  f(5) = 0

57. (B)

For any complex number

 $z = x + ly, x, y \in R$  is the arg  $z = tan^{-1}\left(\frac{y}{x}\right)$  always give the principal value We know that  $\arg(\bar{z}) = -\arg(z)$  $\arg(-z) - \arg(z) = \arg(-z) + \arg(-\bar{z}) = -\pi \arg(z) > 0$ 

58. (B)

$$3\lambda_1 = \pi$$
 and  $2\lambda_2 = -\pi$   
 $\therefore \lambda_1 = \frac{\pi}{3} \ \lambda_2 = -\frac{\pi}{2}$ 



59. (D)

Slope of 
$$BC = \frac{5-8}{\left(10+\frac{7}{2}\right)} = \frac{-2}{9}$$
  $\left[\because B = \left(\frac{-7}{2}, 8\right) and C(10,5)\right]$ 

Hence, the acute angle made by BC with positive x-axis is (2)

$$\tan^{-1}\left(-\frac{2}{9}\right) = \pi - \tan^{-1}\left(\frac{2}{9}\right)$$

60.

(C)



$$y+1 = \frac{8+1}{\left(\frac{-7}{2}-3\right)}(x-3)$$
  

$$\Rightarrow y+1 = \frac{-18}{13}(x-3)$$
  
∴ 18x+13y = 41