PART (A) : PHYSICS

SOLUTION

1. (D)
$\frac{1}{2} K \times \frac{4}{100}=1$
$K=50$
$\therefore T 2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{4}{50}}$
2. (A)
$\mathrm{P}=2 \mathrm{x}$
$F V=2 x$
$m V \frac{d V}{d x} V=2 x \Rightarrow \int_{0}^{x} \frac{2}{m} \mathrm{xdx}$
$\frac{\mathrm{V}^{3}}{3}=\frac{2}{m} \frac{x^{2}}{2}$
$\mathrm{V}=\left[\frac{3}{m} x^{2}\right]^{1 / 3}$
3. (C)

Impulse-momentum theorem
For translatory motion
$\mathrm{MV}_{\mathrm{cm}}=\mathrm{I}$
For rotatory motion
$\left(\frac{2}{5} \mathrm{Mr}^{2}\right)\left(\frac{\mathrm{V}_{\mathrm{cm}}}{\mathrm{r}}\right)=\mathrm{Ih}$
By solving above equations $\frac{h}{r} \frac{2}{5}$
4. (A)

For point $\mathrm{A},{ }_{a} \mu_{g}=\frac{\sin 45^{\circ}}{\sin r}$
$\Rightarrow \sin r=\frac{1}{\sqrt{2}{ }_{a} \mu_{g}}$
For point $\mathrm{B}, \sin \left(\left(90^{0}-r\right)_{a} \mu_{g}\right.$ where, $\left(90^{0}-r\right)$ is critical angle.

$$
\begin{aligned}
& \therefore \cos r={ }_{a} \mu_{g}=\frac{1}{{ }_{a} \mu_{g}} \\
& \Rightarrow{ }_{a} \mu_{g}=\frac{1}{\cos r} \\
& \quad=\frac{1}{\sqrt{1-\sin ^{2} r}}=\frac{1}{\sqrt{1-\frac{1}{2_{a} \mu_{g}{ }^{2}}}} \\
& \Rightarrow{ }_{a} \mu_{g}{ }^{2}=\frac{1}{1-\frac{1}{2 a_{a} \mu_{g}{ }^{2}}}=\frac{2_{a} \mu_{g}{ }^{2}}{2_{a} \mu_{g}{ }^{2}-1} \\
& \Rightarrow 2{ }_{a} \mu_{g}{ }^{2}-1=2 \Rightarrow{ }_{a} \mu_{g}=\sqrt{\frac{3}{2}}
\end{aligned}
$$

5. (A)

Given wave equation is $y(x, t)$
$=e^{-\left(a x^{2}+b t^{2}+2 \sqrt{a b x} x\right)}$
$=e^{-\left[(\sqrt{a x})^{2}+(\sqrt{b t})^{2}+2 \sqrt{a x} \cdot \sqrt{b t}\right]}$
$=e^{-(\sqrt{a x})^{2}+(\sqrt{b t})^{2}}$
$=e^{-\left(x+\frac{\left.\sqrt{\frac{b}{a}}{ }^{\frac{2}{a}}\right)^{2}}{}\right.}$
It is a function of type $\mathrm{y}=\mathrm{f}(\mathrm{x}+\mathrm{vt})$
\Rightarrow speed of wave $=\sqrt{\frac{b}{a}}$
6. (D)
$s=t^{3}+5$
\Rightarrow velocity $\mathrm{v}=\frac{\mathrm{ds}}{d t}=3 t^{2}$
Tangential acceleration $\mathrm{a}_{\mathrm{t}}=\frac{\mathrm{dv}}{\mathrm{dt}}=6 \mathrm{t}$
Radial acceleration $\mathrm{a}_{\mathrm{c}}=\frac{v^{2}}{R}=\frac{9 t^{4}}{R}$
At $\mathrm{t}=2 \mathrm{~s}, \mathrm{a}_{\mathrm{t}}=6 \times 2=12 \mathrm{~m} / \mathrm{s}^{2}$
$a_{c}=\frac{9 \times 16}{20}=7.2 \mathrm{~m} / \mathrm{s}^{2}$
\therefore Resultant acceration
$=\sqrt{a_{t}^{2}+a_{c}^{2}}=\sqrt{(12)^{2}+(7.2)^{2}}=\sqrt{144+51.84}$
$=\sqrt{195.84}=14 \mathrm{~m} / \mathrm{s}^{2}$
7. (B)
$\mathrm{P}_{\mathrm{z}}=\mathrm{V}_{\mathrm{Z}} \mathrm{I}_{\mathrm{Z}} \Rightarrow \mathrm{I}_{\mathrm{Z}}=\frac{2.4 \mathrm{~mW}}{6 \mathrm{~V}}=0.4 \mathrm{~mA}$

$\mathrm{V}_{\mathrm{s}}=12-6=6 \mathrm{~V}$
$I_{S} R_{S}=V_{S}=6 \mathrm{~V}$
$R_{s}=\frac{V_{S}}{I_{S}} \frac{6 V}{\left(I_{Z}+I_{L}\right)}$
$\left(R_{S}\right)_{\text {max }}=\frac{6}{\left(\mathrm{I}_{\mathrm{S}}\right)_{\text {min }}} \frac{6 \mathrm{~V}}{0.4 \mathrm{~mA}}=15 \mathrm{k} \Omega$
8. (D)
$\frac{R}{R_{0}} \frac{1}{128}=\frac{1}{2^{7}}=\frac{1}{2^{t T_{\mathrm{H}}}}$
$\Rightarrow t=7 \mathrm{~T}_{\mathrm{H}}=7 \times 18=126$ days
9. (B)

For given transmission band $88-108 \mathrm{MHz}(\Delta \mathrm{f})_{\max }=75 \mathrm{kHz}$
$\operatorname{Given}(\Delta \mathrm{f})_{\text {actual }}=18.75 \mathrm{kHz}$
$\therefore \%$ modulation $\mathrm{m}=\frac{(\Delta f)_{\text {actual }}}{(\Delta f)_{\max }} \times 100=\frac{18.75}{75}=25 \%$
10. (B)

Efficiency of Cannot engine, $n=1-\frac{T_{2}}{T_{1}}$ where T_{1} and T_{2} be the temperature of source and sink respectively.
$\therefore \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=1-\eta=1-\frac{40}{100}=\frac{60}{100}=\frac{3}{5} \quad(\because \eta=40 \%)$
$\mathrm{T}_{2}=\frac{3}{5} T_{1}=\frac{3}{5} \times 500 \mathrm{~K}=300 \mathrm{~K}$

$$
\begin{equation*}
\left(\because T_{1}=500 \mathrm{~K}\right) \tag{i}
\end{equation*}
$$

Let T_{1}^{\prime} be the temperature of the source for the same sink temperature when efficiency $\eta^{\prime}=50 \%$
$\therefore \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=1-\eta^{\prime}=1-\frac{50}{100}=\frac{1}{2}$
$\mathrm{T}_{1}^{\prime}=2 \mathrm{~T}_{2}=2 \times 300 \mathrm{~K}=600 \mathrm{~K}$
(Using eq. (i))
11. (B)

According to Einstein's photoelectric equation
$\mathrm{hv}=\phi_{0}+\mathrm{K}_{\text {max }}$ we have
$\mathrm{h} \nu=\phi_{0}+0.5$
And $1.2 \mathrm{~h} v=\phi_{0}+0.8$
Therefore, from above two equations $\phi_{0}=1.0 \mathrm{eV}$
12. (D)
$p_{1}=p_{2}$
$m_{1} v_{1}=m_{2} v_{2}$
$m_{1}=m_{2}$
$2 \rho \frac{4}{3} \pi R_{1}^{3}=\rho \cdot \frac{4}{3} \pi R_{2}^{3} ; \frac{R_{1}^{3}}{R_{2}^{3}}=1: 2 ; R_{1}: R_{2}=1: 2^{1 / 3}$
13. (C)

Moment of inertia about z -axis, $\mathrm{I}_{\mathrm{z}}=\mathrm{mr}^{2}$
(about centre of mass)
Applying parallel axes theorem
$\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{\mathrm{cm}}+\mathrm{mk}^{2}$
$\mathrm{I}_{\mathrm{cm}}=\mathrm{I}_{\mathrm{z}}-m\left(\frac{2}{\pi} r\right)^{2}=m r^{2}-\frac{m 4 r^{2}}{\pi^{2}}=m r^{2}\left(1-\frac{4}{\pi^{2}}\right)$
i.e. $\mathrm{k}=4$
14. (D)

Initially centre of mass is at the centre. When sand is poured it will fall and again after a limit, centre of mass will rise.
15. (B)

$$
\mathrm{g} \propto \frac{1}{R^{2}}
$$

R decreasing g increase hence, curve b represents correct variation.
16. (D)

$$
\begin{aligned}
& \mathrm{T}_{1}+\mathrm{T} \cos (\pi-\theta)=\mathrm{T}_{2} \\
& \therefore \cos (\pi-\theta)=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}} \\
& \therefore-\cos \theta=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}} \\
& \therefore \cos \theta=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}}
\end{aligned}
$$

17. (A)

$$
\begin{aligned}
& \mathrm{M}=60 \mathrm{Am}^{2} \\
& \vec{\tau}=1.2 \times 10^{-3} \mathrm{Nm}, \mathrm{~B}_{\mathrm{H}}=40 \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2} \\
& \vec{\tau}=\vec{M} \times \vec{B}_{H} \Rightarrow \tau=\mathrm{MB}_{\mathrm{H}} \sin \theta \\
& \Rightarrow 1.2 \times 10^{-3}=60 \times 40 \times 10^{-6} \sin \theta \\
& \Rightarrow \sin \theta=\frac{1.2 \times 10^{-3}}{60 \times 40 \times 10^{-6}}=\frac{1}{2}=\sin 30^{0} \\
& \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

18. (D)

$$
\begin{aligned}
& \mathrm{V}=\frac{\mathrm{V}_{0}}{\mathrm{~T} / 4} t \Rightarrow V=\frac{4 V_{0}}{T} t \\
& \Rightarrow \mathrm{~V}_{\mathrm{rms}}=\sqrt{\left\langle V^{2}\right\rangle}=\frac{4 \mathrm{~V}_{0}}{\mathrm{~T}} \sqrt{\left\langle t^{2}\right\rangle}=\frac{4 V_{0}}{T}\left\{\frac{\int_{0}^{T / 4} t^{2} d t}{\int_{0}^{T / 4} d t}\right\}^{1 / 2}=\frac{V_{0}}{\sqrt{3}}
\end{aligned}
$$

19. (A)

The simplified circuit is

We have to find I.
Let potential of point P be 0 . Potential at other points are shown in the figure apply Kirchoff's current law at B where potential is assume to be x volt.
$\frac{x-10}{4}+\frac{x-10}{2}+\frac{x-20}{4}+\frac{(x-10)-0}{2}=0$
$\Rightarrow x-10+2 x-20+x-20+2 x-20=0$
$\Rightarrow 6 x=70 \Rightarrow x=\frac{35}{3}$ volt
$\therefore \mathrm{I}=\frac{20-\frac{35}{3}}{4}=\frac{25}{12} \mathrm{~A}$
20. (A)

Surface charge density $(\sigma)=\frac{\text { Charge }}{\text { Surface area }}$
So, $\sigma_{\text {inner }}=\frac{-2 Q}{4 \pi b^{2}}$

And $\sigma_{\text {outer }}=\frac{Q}{4 \pi c^{2}}$
21. (2.68)

Wavelength of monochromatic green light $=5.5 \times 10^{-5} \mathrm{~cm}$
Intensity I $=\frac{\text { Power }}{\text { Area }}$
$=\frac{100 \times(3 / 100)}{4 \pi(5)^{2}}=\frac{3}{100 \pi} \mathrm{Wm}^{-2}$
Now, half of this intensity (I) belongs to electrical field and half of that to magnetic field, therefore
$\frac{\mathrm{I}}{2}=\frac{1}{4} \varepsilon_{0} E_{0}^{2} C$
Or $E_{0}=\sqrt{\frac{2 I}{\varepsilon_{0} C}}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times\left(\frac{3}{100} \pi\right)}{\left(\frac{1}{4 \pi \times 9 \times 10^{9}}\right) \times\left(3 \times 10^{8}\right)}}=\sqrt{\frac{6}{25} \times 30}=\sqrt{7.2} \\
& \therefore E_{0}=2.68 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

22.

(10)

$$
\begin{aligned}
\lambda_{\mathrm{g}} & =\frac{12280 \mathrm{eV} \AA}{100 \mathrm{keV}} \\
& =\frac{1228}{10000} \AA
\end{aligned}
$$

Now, $\mathrm{h}_{\mathrm{g}}=\lambda_{\mathrm{e}}$

$$
\begin{aligned}
& \Rightarrow \frac{1228 \AA}{1000}=\frac{12.28 \AA}{\sqrt{\mathrm{~V}}} \\
& \Rightarrow \sqrt{\mathrm{~V}}=100 \\
& \Rightarrow \mathrm{~V}=10^{4} \mathrm{~V} \\
& \Rightarrow \mathrm{~V}=10 \mathrm{kV}
\end{aligned}
$$

23. (24.00)

$\mathrm{q}=\mathrm{C}_{\text {eq }} \mathrm{V}=\left(\frac{4 \times 6}{4+6}\right) \times 10 \mu C=24 \mu \mathrm{C}$
(in steady state, no current slow through the battery, so p.d. at 2Ω and 5Ω will be zero)
24. (25.00)

In double-slit interference, the distance y of a bright fringe from the centre (zero-order bright fringe)
$y=n \lambda \frac{D}{d}$
Where $\mathrm{n}=0,1,2,3, \ldots$ etc
Thus at a given point, we have
$n \lambda=$ constant
$n_{1} \lambda_{1}=n_{2} \lambda_{2}$
$n_{2}=\frac{n_{1} \lambda_{1}}{\lambda 2}=\frac{12 \times 6000}{4800}=15$
25. (6.40)

$$
\begin{aligned}
& \Delta \mathrm{v}=-\left[\int E_{x} d x+\int E_{y} d y\right] \\
& =-\left[\int_{1}^{3} 2 x d x+\int_{2}^{4} 3 y^{2} d y\right] \\
& |\Delta \mathrm{v}|=64
\end{aligned}
$$

26. (9.50)

At point P ,
$v=\sqrt{2 g l}$
$\Rightarrow a_{c}=\frac{v^{2}}{R}=2 g$
$a_{t}=g \sin 60=\frac{g \sqrt{3}}{2}$
$a_{n e t}=\sqrt{a_{c}^{2}+a_{t}^{2}}$
$=g \frac{\sqrt{19}}{2} \Rightarrow \alpha=19, \beta=2$
27. (4.00)
$\mathrm{dU}=\mu \mathrm{C}_{\mathrm{v}} \mathrm{dT}$
$\therefore \mu \mathrm{C}_{\mathrm{V}}=\frac{d U}{d T}=\frac{80}{20}=4 J / K$
28. (5.00)
$K=\frac{\pi}{2}=\frac{2 \pi}{\lambda} \Rightarrow \lambda=4$
Second overtone $\Rightarrow \frac{5 \lambda}{4}=\mathrm{L} \Rightarrow \mathrm{L}=5 \mathrm{~m}$
29. (3.00)
$\mathrm{W}=\frac{\Delta Q}{u}$
$\Rightarrow \Delta u=\frac{3}{4} \Delta Q$
$n C_{v} \Delta T=\frac{3}{4} n C \Delta T$
$\Rightarrow C=\frac{4 C_{v}}{3}=C_{v}+\frac{R}{1-x}$
$\frac{R}{1-x}=\frac{C_{v}}{3}=\frac{R}{2}$
$\Rightarrow x=-1$
$\Rightarrow \mathrm{PV}^{-1}=$ constant

$$
\Rightarrow \mathrm{P}^{3} \mathrm{~V}^{\mathrm{x}}=\mathrm{K}
$$

30. (25.00)

$$
\begin{aligned}
& \varepsilon=(\vec{v} \times \vec{B}) \cdot \vec{\ell} \\
& =[1 \hat{i} \times(3 \hat{i}+4 \hat{j}+5 \hat{k})] \cdot 5 \hat{j} \\
& \varepsilon=25 v
\end{aligned}
$$

PART (C) : CHEMISTRY

SOLUTION

31. (B)

β-D-ribose used in RNA;

At $2^{\text {nd }}$ carbon -OH group is present.

At $2^{\text {nd }}$ carbon -OH group is missing.
Thus, correct answer is (B).
32. (C)

Covalent character is favoured by Fajan's rule
(i) larger the charge on the ions,
(ii) smaller the size of cations,
(iii) larger the size of cations,
(iv) cation with 18 -electron structure (e.g., Cu^{+}), then larger the polarizing power and the covalent character is favoured.
On all the given compounds, anion is same $\left(\mathrm{Cl}^{-}\right)$, hence polarizing power is decided by size and charge of cation.
Al^{3+} with maximum charge and smallest size has maximum polarizing power hence, AlCl_{3} is maximum covalent.
Thus, correct answer is (C).
33. (A)

Thermal stability of the hydrides decreases as we go down the group in periodic table for group 15 (N family)
$\mathrm{BiH}_{3}<\mathrm{SbH}_{3}<\mathrm{AsH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}$
Least stable
M-H - $255 \quad 247322$
Most stable

Bond energy
$\mathrm{kJ} \mathrm{mol}^{-1}$
(B) Due to absence of d-orbital, nitrogen can't form $\mathrm{d} \pi-\mathrm{p} \pi$ bond, thus it is correct.
(C) The $\mathrm{N}-\mathrm{N}$ bond ($\mathrm{Be} 160 \mathrm{~kJ} \mathrm{~mol}^{-1}$) is weaker than $\mathrm{P}-\mathrm{P}$ bond ($\mathrm{BE} 209 \mathrm{~kJ} \mathrm{~mol}^{-1}$). Thus, it is correct.
(D) $\mathrm{N}_{2} \mathrm{O}_{4}$ can form two resonance structures

Thus, it is correct.
Thus, only (A) is wrong.
34. (D)
Br_{2} is formed by a redox reaction
$5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{-} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
${ }^{-} \mathrm{OH}$ group is the activating group and there is S_{E} at o and p-positions giving yellowish white precipitate of 2,4,6-tribromophenol.

Thus, correct answer is (D).
35. (C)

Molality $=\frac{\text { Moles of solute }}{\text { Mass of solvent (in } \mathrm{kg} \text {) }}$

$$
=\frac{5.2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{1 \mathrm{~kg}(=100 \mathrm{~g}) \mathrm{H}_{2} \mathrm{O}}
$$

$\mathrm{n}_{1}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=5.2$
$\mathrm{n}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{1000}{18}=55.56$
$\therefore \mathrm{n}_{1}+\mathrm{n}_{2}=5.20+55.56=60.76 \mathrm{~mol}$
$\therefore \mathrm{X}_{\mathrm{CH}_{3} \mathrm{OH}}=$ Mole fraction of $\mathrm{CH}_{3} \mathrm{OH}$

$$
=\frac{\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{52}{60.76}=0.086
$$

Thus, correct answer is (C).
36. (B)

Count σ-bond, lone pairs and unpaired electron or count number of atoms directly attached, lone pairs and unpaired electrons.

$$
\begin{aligned}
\text { This is } & =2, \text { then } \mathrm{sp} & =5, \text { then } \mathrm{sp}^{3} \mathrm{~d} \\
& =3, \text { then } \mathrm{sp}^{2} & =6, \text { then } \mathrm{sp}^{3} \mathrm{~d}^{2} \\
& =4, \text { then } \mathrm{sp}^{3} &
\end{aligned}
$$

$\mathrm{NO}_{3}^{-}(1)$

NO_{2}^{+}(II)

NH_{4}^{+}(III)

	σ - bond	Lone pair	Unpaired electron	Total
I.	3	x	x	$3\left(\mathrm{sp}^{2}\right)$
II.	2	x	x	$2(\mathrm{sp})$
III.	4	x	x	$4\left(\mathrm{sp}^{3}\right)$

Thus, correct answer is (B) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{3}$.

Alternate solution

Count the sum of outermost shell electrons of all the atoms and charge present at molecule.
Now, divide the sum by eight and get the hydridisation. If sum is eight or less than eight then it is divide by two.
I. $\mathrm{NO}_{3}^{-} \Rightarrow \frac{5+3 \times 6+1}{8}=\frac{5+18+1}{8}=\frac{24}{8}=3\left(\mathrm{sp}^{2}\right)$
II. $\mathrm{NO}_{2}^{+} \Rightarrow \frac{5+2 \times 6-1}{8}=\frac{5+12-1}{8}=\frac{16}{8}=2(\mathrm{sp})$
III. $\mathrm{NH}_{4}^{+} \Rightarrow \frac{5+4 \times 1-1}{2}=\frac{5+4-1}{2}=\frac{8}{2}=4\left(\mathrm{sp}^{3}\right)$

Thus, correct answer is (B) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{3}$.
37. (A)

Depression in freezing point $\left(\Delta \mathrm{T}_{\ell}\right)$ can be given as $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{f}} \cdot \mathrm{m}$. To solve this problem, we will have to first calculate the value of $\Delta \mathrm{T}_{\mathrm{f}}$ and i. finally, put all the given valued and calculated value in the expression of

$$
\Delta \mathrm{T}_{\ell}=\mathrm{i} \cdot \mathrm{~K}_{\mathrm{f}} \cdot \frac{\text { mass of solute }}{\text { molar mass of solute } \times \text { mass of solvent }}
$$

To calculate the mass of solute.
$\Delta \mathrm{T}_{\mathrm{f}}=$ Freezing point of $\mathrm{H}_{2} \mathrm{O}$ - freezing point of ethylene glycol solution $=0-\left(-6^{\circ}\right)=6^{\circ}$
$\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{kg} \mathrm{mol}^{-1}$
$\mathrm{w}_{1}=$ mass of ethylene glycol in grams
$\mathrm{w}_{2}=$ mass of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in grams $=4000 \mathrm{~g}$
$\mathrm{m}_{1}=$ Molar mass of ethylene glycol $=62 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{i}=$ van't Hoff factor $=1$ (ethylene glycol being non-electrolyte)
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{1000 \mathrm{~K}_{\mathrm{f}} \mathrm{w}_{\mathrm{i}}(\mathrm{i})}{\mathrm{m}_{1} \mathrm{~m}_{2}}$
$\therefore 6=\frac{1000 \times 1.86 \times \mathrm{w}_{1} \times 1}{62 \times 4000}$
$\mathrm{w}_{1}=800 \mathrm{~g}$

Thus, correct answer is (A).
38. (C)

Reduction hydrogen half-cell is

$$
\begin{aligned}
\mathrm{H}^{+}(\mathrm{xM}) & \mid \mathrm{Pt}\left(\mathrm{H}_{2}\right) \\
+ & \text { Pressure }(\mathrm{p})
\end{aligned}
$$

Half-cell reaction is

$$
2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})
$$

Reaction quotient $=\mathrm{Q}=\mathrm{p}_{\mathrm{H}_{2}} /\left[\mathrm{H}^{+}\right]^{2}, \mathrm{n}=2$
$\mathrm{E}_{\text {red }}=\mathrm{E}_{\text {red }}^{0}-\frac{0.0591}{\mathrm{n}} \log \mathrm{Q}$
$=0-\frac{0.0591}{2} \log \mathrm{Q}$

	$\mathrm{p}_{\mathrm{H}_{2}}$	$\left[\mathrm{H}^{+}\right]$	Q	$\mathrm{E}_{\text {red }}$
(a)	1 atm	2.0 M	0.25	+ve
(b)	1 atm	1.0 M	1.0	0
(c)	2 atm	1.0 M	2.0	-ve
(d)	2 atm	2.0 M	0.50	+ve

$\mathrm{E}_{\text {red }}^{0}=0.00 \mathrm{~V}$ for standard hydrogen electrode
If $\mathrm{Q}>1$, then $\mathrm{E}_{\text {red }}=-\mathrm{ve}$.
Thus, correct answer is (C).
39. (D)

	Reagent	Phenol	Benzoic acid	Conclusion
(a)	Aqueous NaOH	Salt formation	Salt formation	No specific colour change
(b)	Tollen's reagent	No effect	No effect	
(c)	Molisch reagent	No effect	No effect	
(d)	Neutral FeCl_{3}	Voilet colour	Buff-coloured precipitate	Thus, FeCl_{3} can be used to make distinction

Thus, correct answer is (D).
40. (D)

41. (A)

Oxides when dissolved in water form hydroxides.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} \\
& \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2} \\
& \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}
\end{aligned}
$$

Smaller the size of cation, larger the charge, greater the polarizing power of cation, hence grater the covalent character, Hence smaller the basic nature.

General

Charge $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}=\mathrm{K}^{+}$
Size $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{K}^{+}$
Polarising power $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{K}^{+}$
Basic nature of oxides

$$
\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{MgO}<\mathrm{Na}_{2} \mathrm{O}<\mathrm{K}_{2} \mathrm{O}
$$

Thus, correct answer is (A).
42. (C)

Energy values are always additive.

$\mathrm{E}_{\text {total }}=\mathrm{E}_{1}+\mathrm{E}_{2}$
$\frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{hc}}{\lambda_{1}}+\frac{\mathrm{hc}}{\lambda_{2}}$
$\therefore \frac{1}{\lambda}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$
$\frac{1}{355}=\frac{1}{680}+\frac{1}{\lambda_{2}}$
$\lambda_{2}=742.77 \mathrm{~nm} \simeq 743 \mathrm{~nm}$
Thus, correct answer is (C).
43. (D)
(A) S_{2} molecules is paramagnetic due to unpaired electrons in MO and is blue-coloured compound, this true.
(B) The vapour at $200^{\circ} \mathrm{C}$ consists mostly of S_{8} ring, thus correct.
(C) At $600^{\circ} \mathrm{C}$, the gas mainly consists of S_{2} molecules, thus correct.
(D) Oxidation states of Sulphur are

$$
\begin{aligned}
& -2 \text { in } \mathrm{H}_{2} \mathrm{~S} \\
& 0 \text { in } \mathrm{S}_{8} \\
& +2 \text { in } \mathrm{S}_{2} \mathrm{O}_{3}^{2-} \\
& +4 \text { in } \mathrm{SO}_{2} \\
& +6 \text { in } \mathrm{SO}_{3}
\end{aligned}
$$

Thus, incorrect. (Valency cannot be less then 4)
Hence, correct option is (D).
44. (A)

Entropy change for n moles of isothermal expansion of an ideal gas from volume V_{1} to volume V_{2} is

$$
\begin{aligned}
\Delta \mathrm{S} & =2.303 \mathrm{nR} \log \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \\
& =2.303 \times 2 \times 8.3143 \log \frac{100}{10} \\
& =38.296 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-}
\end{aligned}
$$

Thus, correct option is (A).
45. (C)

$\mathrm{Cr}(24)[\mathrm{Ar}] 3 d^{5} 4 s^{1}$

$\mathrm{Cr}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0}$

Indicates lone-pair of NH_{3} donated to Cr

(A) $\mathrm{d}^{2} \mathrm{sp}^{3}$-hybridization, octahedral. Thus correct.
(B) There are three unpaired electrons, hence paramagnetic. Thus, correct
(C) $\mathrm{d}^{2} \mathrm{sp}^{3}$-inner orbital complex, this incorrect.
(D) Due to ionizable Cl^{-}ions, white precipitate with AgNO_{3}, this correct. Therefore, (C) is wrong.
46. (D)

Pentagonal-bipyramidal structure.
Thus, correct answer is (D).
47. (C)

For every $10^{\circ} \mathrm{C}$ rise of temperature, rate is doubled.
Thus, temperature coefficient of the reaction $=2$
When temperature is increased by 50°, rate becomes

$$
\begin{aligned}
& =2^{(50 / 50)} \\
& =2^{5} \text { times }=32 \text { times }
\end{aligned}
$$

Thus, correct answer is (C).
48. (C)

Electron-withdrawing group (-I effect) stabilizes the anion, and thus increases acidic nature.
Thus, (C), (D) > (A), (B) acidic
Further the electron withdrawing group from the -COOH group, its effect in increasing acid strength decreases, thus (C) with Cl at α-position is stronger than (D) with Cl at γ-position.
$\mathrm{CH}_{3} \mathrm{COOH}$

$$
\mathrm{K}_{\mathrm{a}}=1.75 \times 10^{-5}
$$

$$
\mathrm{HCOOH} \quad \mathrm{~K}_{\mathrm{a}}=17.7 \times 10^{-5}
$$

49. (C)

Tautomerism is due to spontaneous interconversion of two isomeric forms with difference functional groups into one other. The term tautomer means constitutional isomers that undergo means constitutional isomers that undergo such rapid interconversion that can't be independently isolated.

Thus, (C) 2-pentanone exhibit tautomerism.
50. (A)
K_{p} depends upon the partial pressure of reactants and products so first calculate their partial pressure and then, calculate K_{p}

	$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons$	$2 \mathrm{CO}(\mathrm{g})$
initial	0.5 atm	-
at equilibrium $(0.5-\mathrm{p})$	2 p atm	

This is a case of heterogeneous equilibrium.
51. (4)

cis, racemic

trans, racemic
1-Bromo-2-cyclopentane

cis, racemic

trans, racemic

1-Bromo-3-cyclopentane
52. (4)

All alkyl bromides having carbon skeleton of isopentane (2-methylbutane $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$) will give isopentane via Grignard reagent.

$\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
53. (5)
$\mathrm{d}=\frac{\mathrm{n} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}$ or $\mathrm{n}=\frac{\mathrm{d} \times \mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}{\mathrm{M}}$
$\Rightarrow \mathrm{n}=\frac{2 \times 6 \times 10^{23}\left(5 \times 10^{-8}\right)^{3}}{75}=2$
Therefore metal crystallizes in $b c c$ structure and for a $b c c$ lattice $\sqrt{3} \mathrm{a}=4 \mathrm{r}$
$r=\frac{\sqrt{3}}{4} a=\frac{\sqrt{3} \times 5}{4}=2.165 \AA=216.5 \mathrm{pm}$
$x=\frac{216.5}{43.3}$
$\mathrm{x}=5$
54. (4)

For an octahedral void $\mathrm{a}=2(\mathrm{r}+\mathrm{R})$
In fcc lattice the largest void present is octahedral void. If the radius of void sphere is R and of lattice sphere is r .
Then, $\mathrm{r}=\frac{\sqrt{2} \times 400}{4}=141.42 \mathrm{pm} \quad(\mathrm{a}=400 \mathrm{pm})$
Applying condition for octahedral void,
$2(\mathrm{r}+\mathrm{R})=\mathrm{a}$
$\therefore 2 R=\mathrm{a}-2 \mathrm{r}=400-2 \times 141.42$
\therefore Diameter of greatest sphere $=117.16 \mathrm{pm}$
$\mathrm{d}=\frac{117.16}{29.29}=4$
55. (3)

Let the solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ in 0.2 M NaOH solution be s.
$\mathrm{Al}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Al}_{\mathrm{s}}^{3+}+3 \mathrm{OH}^{-}$and $\underset{0.2 \mathrm{M}}{\mathrm{NaOH}} \rightleftharpoons \underset{0.2 \mathrm{M}}{\mathrm{Na}^{+}}+\underset{0.2 \mathrm{M}}{\mathrm{OH}^{-}}$
$\left[\mathrm{Al}^{3+}\right]=\mathrm{s}$ and $\left[\mathrm{OH}^{-}\right]=3 \mathrm{~s}+0.2 \approx 0.2[]$
$\mathrm{K}_{\mathrm{sp}}=2.4 \times 10^{-2}=\left[\mathrm{Al}^{3+}\right][\mathrm{OH}]^{3}$
$2.4 \times 10^{-2}=\mathrm{s}(0.2)^{3}$
$\mathrm{s}=\frac{2.4 \times 10^{-2}}{8 \times 10^{-3}}=3 \mathrm{~mol} / \mathrm{L}$
56. (5)

For initial solution,
$\because \pi=\frac{500}{760}$ atm, $\quad \mathrm{T}=283 \mathrm{~K}$
$\frac{500}{760} \times \mathrm{V}_{1}=\mathrm{n} \times \mathrm{R} \times 283$
After dilution, let volume becomes V_{2} and temperature is raised to $25^{\circ} \mathrm{C}$, i.e., 298 K .
$\pi=\frac{105.3}{760} \mathrm{~atm}$
$\frac{105.3}{760} \times V_{2}=n \times R \times 298$
\therefore By Eqs. (i) and (ii), we get $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{283}{298} \times \frac{105.3}{500}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{1}{5}$
$\therefore \mathrm{V}_{2}=5 \mathrm{~V}_{1}$
i.e., solution was diluted to 5 times.
57. (2)

Startch molecules have colloidal dimentions. Blood is a -vely charged colloidal system. Rest of the compounds, i.e., NaCl , urea and cane sugar form true solution in water.
58. (2)
$\mathrm{Fe}(\mathrm{OH})_{3}$ particles absorb Fe^{3+} ions and get peptized to give a positively charged sol. Similarly AgCl particles absorbs Ag^{+}ions to give a positively charged solution.
59. (3)

Total cationic charge $=$ Total anionic charge
$2 n+6+24=36$
$\mathrm{n}=3$
60. (5)
$3 \mathrm{Br}_{2}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 5 \mathrm{NaBr}+\mathrm{NaBrO}_{3}+3 \mathrm{CO}_{2}$

PART (C) : MATHEMATICS

Answer Key \& Solution

61. (D)

The 5 lines intersect in $\binom{5}{2}=10$ points
The 10 points when joined gives $\binom{10}{2}=45$ lines.
Each of the old line contains 4 points giving $\binom{4}{2}=6$ lines
Therefore the new lines are $45-5 \times 6=15$
The probability of a new line $=\frac{15}{15+5}=\frac{3}{4}$.
62. (D)
$\because \quad f(x)=2 \sqrt{x}$
$\therefore \quad f^{\prime}(x)=\frac{1}{\sqrt{x}}>0$
$\Rightarrow f(x)$ is an increasing function
$\therefore \quad f_{1}(x)=f(x)=2 \sqrt{x}$
or $\quad f_{1}(x)=2 \sqrt{x}, x \in[0,1]$
and $g(x)=2 \sqrt{(1-x)}$
$\therefore \quad g^{\prime}(x)=-\frac{1}{\sqrt{(1-x)}}<0$
$\Rightarrow g(x)$ is decreasing function
$\therefore \quad g_{1}(x)=g(x)=2 \sqrt{(1-x)}$
or $\quad g_{1}(x)=2 \sqrt{(1-x)}, x \in[0,1]$
From Eqs. (i) and (ii),

$2 \sqrt{x}=2 \sqrt{(1-x)}$
or $x=1-x$
or $\quad x=\frac{1}{2}$
Then, $f_{1}\left(\frac{1}{2}\right)=g_{1}\left(\frac{1}{2}\right)=\sqrt{2}$
\therefore Required area $=\int_{0}^{1 / 2} f_{1}(x) d x+\int_{1 / 2}^{1} g_{1}(x) d x$

$$
=\int_{0}^{1 / 2} 2 \sqrt{x} d x+\int_{1 / 2}^{1} 2 \sqrt{(1-x)} d x
$$

$=\frac{4}{3}\left\{x^{3 / 2}\right\}_{0}^{\frac{1}{2}}+\frac{4}{3}\left\{-(1-x)^{3 / 2}\right\}_{\frac{1}{2}}^{1}$
$=\frac{4}{3}\left(\frac{1}{2 \sqrt{2}}\right)+\frac{4}{3}\left(\frac{1}{2 \sqrt{2}}\right)=\frac{4}{3 \sqrt{2}}$ squnit
63. (B)

Domain of $\sqrt{x(x-3)}$ is $x \in(-\infty, 0] \cup[3, \infty)$
Now $(3|x|-3)^{2}=|x|+7 \Rightarrow|x|=\frac{1}{9}$ or $|x|=2$
\therefore No. of solutions are 2 .
64. (B)

By observation we find that in the above product no odd exponent of ' x ' occurs
\therefore Sum of coefficients of all odd expansion of $x=0$
65. (A)
$\sum_{j=1}^{k} a_{j} a_{j+1}=k\left(a_{1} a_{k+1}\right)$
Here, $k=4 \quad \therefore$ It is a root of $x^{2}-6 x+8=0$
66. (C)

We know that limiting case of Binomial distribution is poisson distribution using
$\underset{n \rightarrow \infty}{\operatorname{Lt}}\left(\left(1-\frac{m}{n}\right)^{-\frac{n}{m}}\right)^{\left(1-\frac{r}{n}\right)(-m)}=e^{-m}$
67. (C)

$$
\frac{\int_{0}^{n}\{x\} d x}{\int_{0}^{n}[x] d x}=\frac{\frac{n}{2}}{\frac{n(n-1)}{2}}=\frac{1}{n-1}
$$

So reciprocal $=n-1$
68. (B)
$f(x)=3[x]+5=5[x]-3 \Rightarrow[x]=4$
Now $[x+f(x)]=21 \quad \therefore f(x)=17$
$\int_{1}^{2} x[x+f(x)] d x=2\left|\frac{x^{2}}{2}\right|_{1}^{2}=\frac{63}{2}$
69. (C)

Area $=\frac{x^{2}}{2} \sin \theta, A_{\text {max }}$ at $\theta=\frac{\pi}{2}$
\therefore Area $=\frac{x^{2}}{2}$
70. (D)

Given $\sum_{i=1}^{n} \overrightarrow{a_{i}}=0$
$\left(\sum_{i=1}^{n} \overrightarrow{a_{i}}\right) \cdot\left(\sum_{i=1}^{n} \overrightarrow{a_{j}}\right)=\sum_{i=1}^{n}\left|a_{i}\right|^{2}+2 \sum_{1 \leq i \leq j \leq n} \sum_{\overrightarrow{a_{i}}} \overrightarrow{a_{j}} \Rightarrow 0=n+2 \sum_{1 \leq i \leq j \leq n} \sum_{\overrightarrow{a_{i}} \cdot}^{\overrightarrow{a_{j}}}$
$\therefore \sum_{1 \leq i \leq j \leq n} \sum \overrightarrow{a_{i}} \cdot \overrightarrow{a_{j}}=-\frac{n}{2}$
71. (D)
$\vec{a}=8 \vec{b}, \vec{c}=-7 \vec{b}$
Now, $\vec{a} \cdot \vec{c}=|\vec{a}||\vec{c}| \cos \theta$
$(8 \vec{b}) \cdot(-7 \vec{b})=8 \times 7 b^{2} \cos \theta \Rightarrow \cos \theta=-1 \Rightarrow \theta=\pi$
72. (B)

$$
\int_{0}^{\pi}[\cot x] d x=\int_{0}^{\pi}[\cot (\pi-x)] d x=\int_{0}^{\pi}[-\cot x] d x
$$

We know that $[x]+[-x]=-1 \quad$ if $x \notin z$

$$
=0 \quad \text { if } x \in z
$$

$\therefore 2 I=\int_{0}^{\pi}[\cot x] d x+\int_{0}^{\pi}[-\cot x] d x$
$2 I=\int_{0}^{\pi}(-1) d x \Rightarrow I=-\frac{\pi}{2}$
73. (B)

$$
n(s)={ }^{20} C_{4}
$$

Statement - 1 common difference 1 total case $=17$

$$
\text { common difference } 2 \text { total case }=14
$$

$$
\text { common difference } 3 \text { total case }=11
$$

common difference 4 total case $=8$
common difference 5 total case $=5$
common difference 6 total case $=2$
Probability $=\frac{17+14+11+8+5+2}{{ }^{20} C_{4}}=\frac{1}{85}$
74. (A)

$$
\sim((P \wedge \sim R) \leftrightarrow Q)=\sim(Q \leftrightarrow(P \wedge \sim R))
$$

75. (A)
$3 \sin P+4 \cos Q=6$
$4 \sin Q+3 \cos P=1$
From the above, \underline{P} is obtuse
Now squaring and adding gives
$\sin (P+Q)=\frac{1}{2} \Rightarrow P+Q=\frac{5 \pi}{6} \Rightarrow R=\frac{\pi}{6}$
76. (D)

No. of ways $=(10+1)(9+1)(7+1)-1=879$
77. (A)
$f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi=[x] \cos \left(x-\frac{1}{2}\right) \pi=[x] \sin \pi x$ is continuous $\forall x \in R$
78. (C)

We have
$1+2\left(\frac{\cos \theta}{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}\right)^{2}=1+\frac{1}{2}\left(\frac{1-\sin ^{2} \theta}{1-\sin \theta}\right) \quad=1+\frac{1}{2}(1+\sin \theta)=\frac{3}{2}+\frac{1}{2} \sin \theta$
Since, $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
$\Rightarrow-1 \leq \sin \theta<1 \quad \Rightarrow-\frac{1}{2} \leq \frac{1}{2} \sin \theta<\frac{1}{2} \Rightarrow \frac{3}{2}-\frac{1}{2} \leq \frac{3}{2}+\frac{1}{2} \sin \theta<\frac{3}{2}+\frac{1}{2}$

$$
\begin{array}{ll}
\Rightarrow 1 \leq 1+\frac{1}{2}\left(\frac{\cos \theta}{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}\right)<2 & \Rightarrow\left[1+\frac{1}{2}\left(\frac{\cos \theta}{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}\right)\right]<2 \\
\Rightarrow\left[1+\frac{1}{2}\left(\frac{\cos \theta}{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}\right)\right]=1
\end{array}
$$

Thus, the given inequality reduces to
$\left|2 x^{2}-4 x-7\right|<1$
$\Rightarrow-1<2 x^{2}-4 x-7$ and $2 x^{2}-4 x-7<1$
$\Rightarrow 2 x^{2}-4 x-6>0$ and $2 x^{2}-4 x-8<0$
$\Rightarrow x^{2}-2 x-3>0$ and $x^{2}-2 x-4<0$
$\Rightarrow x<-1$ or $x>3$ and $\Rightarrow 1-\sqrt{5}<x<1+\sqrt{5}$
$\Rightarrow x \in(1-\sqrt{5},-1) \cup(3,1+\sqrt{5})$
79. (A)

Let OL be the pole and angle of elevation of top of pole at each of A, B, C be α
$\frac{O L}{O A}=\tan \alpha \Rightarrow O A=O L \cot \alpha, O B=O L \cot \alpha, O C=O L \cot \alpha$
$\Rightarrow O A=O B=O C$
$\therefore \mathrm{O}$ is circumcentre
80. (B)

Given roots of $f(x)=0$ are $3^{\sqrt{\log _{3} 7}}$ and $7{\sqrt{\log _{7} 3}}^{\text {which are equal }}$
$\therefore D=0 \Rightarrow a b=16$
Set of numbers whose product is 16 are $(1,16),(4,4)(2,8)(8,2)(16,1)$. Here suitable sets for $f(1)$ to be maximum are $(1,16)$
$\therefore f(1)=1+16-8=9$ which is maximum of $f(1)$
81. (8)

$$
\int_{0}^{x} f(\sqrt{t}) d t=x^{2}+\int_{x}^{1} t f(\sqrt{t}) d t
$$

Differentiating both sides we get

$$
f(\sqrt{x})=2 x+f(\sqrt{t}) 0-x f(\sqrt{x}) \quad \Rightarrow(x+1) f(\sqrt{x})=2 x \Rightarrow f(2)=\frac{8}{5}
$$

82. (8)

Required area $=4 \int_{0}^{\pi}(x+\sin x-x) d x=8$ sq.units
83. (4)
$x+y=3 \Rightarrow 2 \cdot \frac{x}{2}+y=3$
$A . M \geq G . M \Rightarrow \frac{2 \cdot \frac{x}{2}+y}{3} \geq\left[\left(\frac{x}{2}\right)^{2} y\right]^{1 / 3} \Rightarrow 1 \geq\left(\frac{x^{2} y}{4}\right)^{1 / 3} \Rightarrow x^{2} y \leq 4$
84. (10)

No. of odd divisors of 360 are $6(1,3,5,9,15,45)$
Their sum $=78$
Mean of odd divisors $=13$
Median $=\frac{5+9}{2}=7$
Mean of median and mean $=\frac{13+7}{2}=10$
85. (1)

Let the coordinates of C be $(1, c)$
Here, $m_{2}=\frac{c-y}{1-x} \Rightarrow m_{2}=\frac{c-m_{1} x}{1-x}($ Let $y=m x)$

$$
\begin{equation*}
\Rightarrow m_{2}-m_{2} x=c-m_{1} x \quad \Rightarrow c=\left(m_{1}-m_{2}\right) x+m_{2} \tag{i}
\end{equation*}
$$

Now, area of $\triangle A B C=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ x & m_{1} x & 1 \\ 1 & c & 1\end{array}\right|=\frac{1}{2}\left(c x-m_{1} x\right)$

$$
=\frac{1}{2}\left|\left[\left(\left(m_{1}-m_{2}\right) x+m_{2}\right) x-m_{1} x\right]\right|=\frac{1}{2}\left|\left[\left(m_{1}-m_{2}\right) x^{2}+m_{2} x-m_{1} x\right]\right|
$$

$$
=\frac{1}{2}\left(m_{1}-m_{2}\right)\left(x-x^{2}\right) \quad\left[\because x>x^{2} \text { in }(0,1)\right]
$$

$\therefore f(x)=4\left(x-x^{2}\right) \quad \Rightarrow \max f(x)=1$ when $x=\frac{1}{2}$
86. (5)

If (h, k) be the centre

$$
\begin{aligned}
& (h-1)^{2}+(k-0)^{2}=k^{2} \Rightarrow h=1 \\
& (h-2)^{2}+(k-3)^{2}=k^{2} \Rightarrow k=\frac{5}{3} \\
& \therefore \text { Radius }=\frac{5}{3}
\end{aligned}
$$

87. (0)
By graph No.of solutions = zero
88. (0)
89. (5)

Since lines are perpendicular

$$
\Rightarrow 2 \times 2+\frac{2}{3} \times \frac{3}{2}-\alpha=0 \Rightarrow \alpha=5
$$

90. (7)

1	2	3	4	5	6
	$\ldots \ldots \ldots$				
200	200	200	240	280	$\ldots \ldots \ldots$
Sum $=11040$					
$120+80+160+40+200+240+\ldots=11040$					
$\frac{n}{2}[2 a+(n-1) d]+80+40=11040$					
$\frac{n}{2}[240+(n-1) 40]=10920$					
$n[6+n-1]=546$					
$n(n+5)=546$					
$n=21$					

