CHEMICAL BONDING
 SOLUTIONS

LEVEL - 1

IONIC BOND

1. An ionic compound $\mathrm{A}^{+} \mathrm{B}^{-}$is most likely to be formed when.
(1) The ionization energy of A is high and electron affinity of B is low
(2) The ionization energy of A is low and electron affinity of B is high
(3) Both, the ionization energy of A and electron affinity of B are high
(4) Both, the ionization energy of A and electron affinity of B are low

There must be an overall decrease in energy, i.e. energy must be released. For this cation should have low Ionisation potential and anion should have high value of electron-affinity. This is the basic condition for formation of an electrovalent bond
2. Which of the following is an ionic compound?
(1) SO_{3}
(2) ICl
(3) KI
(4) CHCl_{3}

K is highly electropositive. Electronic configuration of K is $2,8,8,1$ and I is highly electronegative. Therefore they form an electrovalent or ionic bond.
3. The compound which does not contain ionic bond is
(1) NaOH
(2) HCl
(3) $\mathrm{K}_{2} \mathrm{~S}$
(4) LiH

In $\mathrm{NaOH}, \mathrm{Na}$ is $2,8,1$ and OH has -1 valency \therefore Na donates 1 electron and OH accepts one electron. This is the case in each option \therefore they form ionic compunds. But in HCl , both H and Cl are sharing electrons.
4. The magnitude of the lattice energy of a solid increase if
(1) the ions are large
(2) the ions are small
(3) the ions are of equal size
(4) charges on the ions are small

Lattice energy is the amount of energy released when one mole of ionic solid is formed from its gaseous ions. The amount of energy released is due to electrostatic force of attraction.
$\mathrm{F} \propto \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}$ where r is the interionic distance and $\mathrm{q} 1, \mathrm{q} 2$ are magnitude of charges.
\therefore for max lattice energy, r should be minimum r will be small, if size of ion is small.
5. Which one of the following statements is incorrect?
(1) Sodium hydride is ionic
(2) Beryllium chloride is covalent
(3) CCl_{4} gives a white ppt. with AgNO_{3} solution
(4) Bonds in NaCl are non-directional
6. The compound which contains ionic as well as covalent bonds is
(1) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
(2) $\mathrm{CH}_{3} \mathrm{I}$
(3) KCN
(4) $\mathrm{H}_{2} \mathrm{O}_{2}$

Ionic bond id formed when electronegativity difference is very large i.e. between 1.7 to 3.2. Hence Ionic bond is formed between K and C and covalent bond is formed between C and N .
7. Which of the following is least soluble in $\mathrm{H}_{2} \mathrm{O}$?
(1) BaF_{2}
(2) SrF_{2}
(3) CaF_{2}
(4) MgF_{2}

Water is polar solvent and like dissolves like $\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Ba}, \mathrm{Br}, \mathrm{Ra}$ are elements of group II A, and as we go down a group electronegativity decreases. Hence the least electropositive elements
are topmost elements i..e. Br, Mg is more electropositive than the other option, the bond between MgF_{2} is highly polar.
8. Amongst $\mathrm{LiCl}, \mathrm{RbCl}, \mathrm{BeCl}_{2}$ and MgCl_{2}, the compounds with the greatest and least ionic character respectively are
(1) LiCl and RbCl
(2) RbCl and BeCl_{2}
(3) RbCl and MgCl_{2}
(4) MgCl_{2} and BeCl_{2}

Compare these elements in the periodic table to find Rb is most electropositive and Be is least electropositive. Greatest Ionic character is seen when highly electropositive element reacts with highly electronegative element.
9. Which of the following is insoluble in water?
(1) AgF
(2) AgI
(3) KBr
(4) CaCl_{2}

To be Insoluble in water, the solute should be non-polar I is more electropositive than $\mathrm{F} . \therefore \mathrm{AgI}$ is more non polar than AgF.
10. Which of the following is least ionic?
(1) AgCl
(2) KCl
(3) BaCl_{2}
(4) CaCl_{2}

For such questions, refer the periodic table and check electronegativities. To be least ionic the electronegativity difference between the metal and non-metal should be the least.
11. Which one is the highest melting point?
(1) NaCl
(2) NaF
(3) NaBr
(4) NaI . M.P. \propto Lattice energy
12. Which of the following statements about LiCl and NaCl is wrong?
(1) LiCl has lower melting point that NaCl
(2) LiCl dissolves more in organic solvents whereas NaCl does not
(3) LiCl would ionise in water more than NaCl
(4) Fused LiCl would be less conducting than fused NaCl

LiCl has greater covalent character.
13. In which of the following species the bonds are non-directional?
(1) NCl_{3}
(2) RbCl
(3) BeCl_{2}
(4) BCl_{3}

Overlapping does not take place in ionic bond. Rb is a metal present in group $\mathrm{I}(\mathrm{A})$ of periodic table.
14. The electrovalency of the element is equal to the -
(1) number of electrons lost
(2) number of electrons gained
(3) number of electron transferred
(4) number of electrons lost or gained by the atom of the element during the formation of ions of ionic compound
The number of electron gained or lost by an atom of an element is known as its electrovalency.
15. Ionic bond formation involves :
(1) Elimination of protons
(2) Sharing of electrons
(3) Overlapping of orbitals
(4) Completion of octets

In ionic bond formation the atoms lost or gain electrons to complete their octets.
16. The hydration of ionic compounds involves -
(1) Evolution of heat
(2) Weaking of attractive forces
(3) Dissociation into ions
(4) All

Hydration is an exothermic process.
17. Among the following which compounds will show the lowest lattice energy ?
(1) KF
(2) NaF
(3) CsF
(4) RbF

Lattice energy $\propto \frac{1}{\text { size }}$ of the cation.
18. The lattice energy of the lithium is in the following order:
(1) $\mathrm{LiF}>\mathrm{LiCl}>\mathrm{LiBr}>\mathrm{LiI}$
(2) $\mathrm{LiCl}>\mathrm{LiF}>\mathrm{LiBr}>\mathrm{LiI}$
(3) $\mathrm{LiBr}>\mathrm{LiCl}>\mathrm{LiF}>\mathrm{LiI}$
(4) $\mathrm{LiI}>\mathrm{LiBr}>\mathrm{LiCl}>\mathrm{LiF}$

Lattice energy $\propto \frac{1}{\text { size }}$ of the cation.
19. Among $\mathrm{LiCl}, \mathrm{BeCl}_{2}, \mathrm{BCl}_{3}$ and CCl_{4}, the covalent bond character follows the order :
(1) $\mathrm{LiCl}<\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
(2) $\mathrm{LiCl}>\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
(3) $\mathrm{LiCl}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
(4) $\mathrm{LiCl}>\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
20. Which one of the following show correct order of covalent character ?
(1) $\mathrm{ZnO}<\mathrm{ZnS}$
(2) $\mathrm{ZnS}=\mathrm{ZnO}$
(3) $\mathrm{ZnS}<\mathrm{ZnO}$
(4) None
21. Lattice energy (LE) affects on :-
(1) Stability of ionic compound
(2) Melting point of ionic compound
(3) Solubility of ionic compound
(4) All of the above

OCTET RULE AND COVALENT BOND

22. Which of the following compound does not follow octet rule?
(1) CO_{2}
(2) PCl_{3}
(3) ICl
(4) ClF_{3}
23. In NO_{3}^{-}ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are
(1) 2,2
(2) 3,1
(3) 1,3
(4) 4,0
24. Which of the following statements concerning a covalent bond is false?
(1) The electrons are shared between atoms
(2) The bond is non-directional
(3) The strength of the bond depends upon the extent of overlapping
(4) The bond formed may be polar or non-polar.
25. The number of $\operatorname{sigma}(\sigma)$ and $\mathrm{pi}(\pi)$ bonds present in a molecule of tetracyanoethylene $(\mathrm{CN})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$ are
(1) 5σ and 9π
(2) 5σ and 8π
(3) 9σ and 9π
(4) 9σ and 7π

26. In the electronic structure of acetic acid, there are
(1) 16 shared and 8 unshared electrons
(2) 8 shared and 16 unshared electrons
(3) 12 shared and 12 unshared electrons
(4) 18 shared and 6 unshared electrons

27. Which of the following is an example of super octet molecule?
(1) ClF_{3}
(2) PCl_{5}
(3) IF_{7}
(4) all the three

The total electrons surrounding the central atoms are more than 8 in all.
28. Which of the following has one lone pair of electrons on the central atom?
(1) H_{2}
(2) CH_{4}
(3) NH_{4}^{+}
(4) NCl_{3}

29. A covalent bond may be formed by
(1) s-s-overlap
(2) s -p-overlap
(3) $\mathrm{p}-\mathrm{p}-$ overlap
(4) all these three

s-s-overlap

s-p-overlap

p-p-overlap
30. Lateral overlap of p -orbitals leads to the formation of
(1) π-bond
(2) metallic bond
(3) σ-bond
(4) Ionic bond

Sideways overlap of p-orbitals lead to π-bonds.
31. The fluorine molecule is formed by
(1) $p-p$ orbitals (sideways overlap)
(2) $\mathrm{p}-\mathrm{p}$ orbitals (end-to-end overlap)
(3) $\mathrm{sp}-\mathrm{sp}$ orbitals
(4) $\mathrm{s}-\mathrm{s}$ orbitals

A σ-bond is formed between the two F-atoms by the overlap of their P-orbitals.
32. Which of the following will provide the most efficient overlap?
(1) $\mathrm{s}-\mathrm{s}$
(2) $\mathrm{s}-\mathrm{p}$
(3) $\mathrm{sp}^{2}-\mathrm{sp}^{2}$
(4) $\mathrm{sp}-\mathrm{sp}$

Hybrid orbitals with greater p -character form stronger bonds.
35. Two hybrid orbitals have a bond angle of $120^{\circ} \mathrm{C}$. The percentage of s character in the hybrid orbital is nearly
(1) 25%
(2) 33%
(3) 50%
(4) 66%
Sp^{2} hybridisation has 120^{0} bond angles.
37. The molecule $M L_{x}$ is planar with six pairs of electrons around M in the valence shell. The value of x is
(1) 6
(2) 2
(3) 4
(4) 3
$\mathrm{Sp}^{3} \mathrm{~d}^{2}$ hybridsation

38. Atomic orbitals of carbon in carbon dioxide are
(1) sp -hybridised
(2) $\mathrm{sp}^{3} \mathrm{~d}$ - hybridised
(3) $\mathrm{sp}^{2}-$ hybridised
(4) sp^{3} - hybridised $\mathrm{O}=\mathrm{C}=\mathrm{O}$ Sp
39. Which one is not tetrahedral?
(1) BF_{4}^{-}
(2) NH_{4}^{+}
(3) CO_{3}^{2-}
(4) SO_{4}^{2-}

40. On hybridization of one s and one p - orbitals, we get
(1) two mutually perpendicular orbitals
(2) two orbitals at 180°
(3) four orbitals directed tetrahedrally
(4) three orbitals in a plane.

Sp hybridization gives linear geometry.
41. The geometry and the type of hybrid orbitals present about the central atom in BF_{3} is
(1) linear, sp
(2) trigonal planar, sp^{2}
(3) tetrahedral, sp^{3}
(4) pyramidal, sp^{3}

Sp^{2}
42. The linear structure is assumed by
(1) SnCl_{2}
(2) $\mathrm{C}_{2} \mathrm{H}_{2}$
(3) NO_{2}
(4) SO_{2}

$$
\begin{aligned}
\mathrm{H}-\mathrm{C} & \equiv \mathrm{C}-\mathrm{H} \\
\stackrel{\downarrow}{\downarrow} & \stackrel{\mathrm{~S}}{\mathrm{Sp}}
\end{aligned}
$$

43. CO_{2} is isostructural with
(1) HgI_{4}^{-}
(2) SnCl_{2}
(3) NCO^{-}
(4) NO_{2}
Θ
$: \ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}:: \ddot{\mathrm{N}}=\mathrm{C}=\ddot{\mathrm{O}}:$
44. The bond angles of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$and NH_{2}^{-}are in the order
(1) $\mathrm{NH}_{2}^{-}>\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}$
(2)
(4)

$$
\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}
$$

(3) $\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}>\mathrm{NH}_{4}^{+}$
$\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}$

45. The correct order of bond angles is
(1) $\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}$
(2)
$\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}$
(3) $\mathrm{NO}_{2}>\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}$
(4) $\quad \mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{-}$

180^{0}

134^{0}
\because

115^{0}
46. The bond angle in $\mathrm{H}_{2} \mathrm{~S}$ is
(1) $>\mathrm{NH}_{3}$
(2) Same as in BeCl_{2}
(3) $>\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{O}$
(4) Same as in CH_{4}

Bond angle decreases with the decrease in the electronegativity of the central atom
47. Which of the following set contains species having same angle around the central atom?
(1) $\mathrm{SF}_{4}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$
(2) $\mathrm{NF}_{3}, \mathrm{BCl}_{3}, \mathrm{NH}_{3}$
(3) $\mathrm{BF}_{3}, \mathrm{NF}_{3}, \mathrm{AlCl}_{3}$
(4) $\mathrm{BF}_{3}, \mathrm{BCl}_{3}, \mathrm{BBr}_{3}$

All are sp^{2} hybridised.
49. Which of the following pair does not have same shape?
(1) $\mathrm{NH}_{4}{ }^{+}, \mathrm{CH}_{4}$
(2) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{NH}_{3}$
(3) $\mathrm{I}_{3}{ }^{-}, \mathrm{XeF}_{2}$
(4) $\mathrm{PF}_{5}, \mathrm{BrF}_{5}$
PF_{5} is trigonal bi pyramidal and BrF_{5} is square pyramidal.
50. Which of the following does not have a tetrahedral structure?
(1) SO_{4}^{2-}
(2) SF_{4}
(3) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
(4) SeO_{4}^{2-}
SF_{4} is trigonal bipyramid.

51. The geometrical arrangement and shape of I_{3}^{-}are respectively
(1) Trigonalbipyramidal, T-shape
(2) Octahedral, linear
(3) Trigonal planar, Angular
(4) Trigonalbipyramidal, linear

Arrangement is trigonal bipyramidal.
52. Which of the following is octahedral?
(1) PCl_{6}
(2) SF_{4}
(3) BO_{3}^{3-}
(4) BF_{4}^{-}

53. Which of the following have linear shape?
(1) SnCl_{2}
(2) $\mathrm{NO}_{2}{ }^{+}$
(3) FNO
(4) SO_{2}

Calculate hybridization for each molecule
$\mathrm{NO}_{2}^{+} \rightarrow \frac{1}{2}[0+5-1]=2=$ sp hybridization
No. of lone pairs $=0$
\therefore shape is linear.
54. A molecule XY_{2} contains two σ, two π bonds and one lone pair of electrons in the valence shell of X . The arrangement of lone pair as well as bond pairs is
(1) Square pyramidal (2) Linear
(3) Trigonal planar
(4) Unpredictable
Trigonal planar

55. If the atomic number of M is 50 . The shape of gaseous MCl_{2} is
(1)

(2)

(3)

(4)

56. Select the correct order for the stability of given possible structures of ClF_{3}

(I)

(II)

(III)
(1) I $>$ II $>$ III
(2) III $>$ II $>$ I
(3) II $>$ I $>$ III
(4) III $>$ I $>$ II

Repulsion between
Lone - pair - lone pair > lone pair bond pair > Bond pair Bond pair
\therefore III is least statble
57. In which of the following, bond angle is maximum?
(1) NH_{3}
(2) NH_{4}^{+}
(3) PCl_{3}
(4) SCl_{2}

Presence of lone pairs on the central atom decreases the bond angles.

DIPOLE MOMENT

58. Which of the following pair contains both polar and non - polar bonds?
(1) $\mathrm{NH}_{4} \mathrm{Cl}$
(2) HCN
(3) $\mathrm{H}_{2} \mathrm{O}_{2}$
(4) CH_{4}

59. Among the following bonds which has the most polar character?
(1) $\mathrm{C}-\mathrm{O}$
(2) $\mathrm{C}-\mathrm{Br}$
(3) $\mathrm{C}-\mathrm{F}$
(4) $\mathrm{C}-\mathrm{S}$

For most polar character, we find most electro-negative element from $\mathrm{O}, \mathrm{Br}, \mathrm{F}$ and S

| E.N. |
| :--- | :---: | :---: |
| decreases |
| \downarrow | | O |
| :---: | :---: |
| S | $\mathrm{B} \downarrow \downarrow$| E.N. |
| :---: |
| decreases |

E.N. inc

From periodic table
$\therefore \mathrm{F}$ most electronegative
60. The molecule which has zero dipole moment is
(1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(2) BF_{3}
(3) NH_{3}
(4) ClO_{2}
BF_{3} is trigonal planar and hence has zero dipole moment.
61. Which one of the following arrangement of molecules is correct on the basis of their dipole moments?
(1) $\mathrm{BF}_{3}>\mathrm{NF}_{3}>\mathrm{NH}_{3}$
(2) $\mathrm{NF}_{3}>\mathrm{BF}_{3}>\mathrm{NH}_{3}$
(3) $\mathrm{NH}_{3}>\mathrm{BF}_{3}>\mathrm{NF}_{3}$
(4) $\mathrm{NH}_{3}>\mathrm{NF}_{3}>\mathrm{BF}_{3}$

In NH_{3}, the orbital dipole due to lone pair is in the same direction as resultant dipole moment of $\mathrm{N}-$ H bonds but in NF_{3}, the orbital dipole is in the direction opposite to resultant dipole moment of the 3 N - F bonds
62. Arrange the following compounds in order of increasing dipole moment. Toluene (I), m dichlorobenzene (II), o - dichlorobenzene (III), p - dichlorobenzene (IV).
(1) I < IV < II < III
(2) IV $<$ I $<$ II $<$ III
(3) IV $<$ I $<$ III $<$ II
(4) IV $<$ II $<$ I $<$ III
Dipole moment increases with decrease in bond angles.
63. Which one of the following has zero dipole moment?
(1) ClF
(2) PCl_{3}
(3) SiF_{4}
(4) CFCl_{3}
SiF_{4} has symmetrical structure
64. Which of the following compounds is non-polar?
(1) $\mathrm{CH}_{3} \mathrm{Cl}$
(2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(3) CHCl_{3}
(4) CCl_{4}
CCl_{4} has a symmetrical structure.
65. Which of the following molecules has highest dipole moment?
(1) $\mathrm{H}_{2} \mathrm{~S}$
(2) CO_{2}
(3) CCl_{4}
(4) BF_{3}

MOT

66. Which of the following diatomic molecules would be stabilized by the removal of an electron
(1) C_{2}
(2) CN
(3) N_{2}
(4) O_{2}

Bond order of $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}$
67. When N_{2} forms N_{2}^{+}, the $\mathrm{N}-\mathrm{N}$ bond distance \qquad and when O_{2} forms to O_{2}^{+}, the $\mathrm{O}-\mathrm{O}$ bond distance \qquad
(1) increases, decreases
(2)
decreases, increases
(3) increase in both case
(4) decrease in both case

Bond order $\propto \frac{1}{\text { bond length }}$
68. Which graph best represent the energy diagram of molecular orbitals V/S distance between atoms
(1)

(3)
Distance between atoms
(2)

(4)
Distance between atoms

Bonding M.O. have lower energy than antibonding M.O
69. Which of the following statements is incorrect?
(1) He_{2} does not exist because its bond order is zero
(2) $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}$and O_{2}^{+}are all paramagnetic
(3) any two atomic orbitals can combine to form two molecular orbitals
(4) $\pi\left(2 p_{x}\right)$ and $\pi\left(2 p_{y}\right)$ are degenerate molecular orbitals

For linear combination of atomic orbitals the combining orbitals should have comparable energies.
70. The bond order in peroxide ion $\left(\mathrm{O}_{2}^{2-}\right)$ is
(1) 2.5
(2) 1.5
(3) 2
(4) 1.0
B. $\mathrm{O}=\frac{\mathrm{N}_{\mathrm{b}}=\mathrm{N}_{\mathrm{a}}}{2}$
71. The energy of $\sigma_{2 s}$ is greater than $\sigma_{1 s}^{*}$ orbital because
(1) $\sigma_{2 \mathrm{~s}}$-orbital is bigger than $\sigma_{1 \mathrm{~s}}$ orbital
(2) $\sigma_{2 s}$ is a bonding orbital whereas σ_{15}^{*} is an antibonding orbital
(3) $\sigma_{2 s}$-orbital has a greater value of n than $\sigma_{1 s}^{*}$-orbital
(4) $\sigma_{2 s}$-orbital is formed only after $\sigma_{1 s}$

Energy of an orbitals $\propto \mathrm{n}$
72. The sequence of energy levels of MO's formed from the outermost shells of C_{2} molecule is
(1) $\sigma(2 s)<\sigma^{*}(2 s)<\pi\left(2 p_{x}\right)=\pi\left(2 p_{y}\right)<\sigma\left(2 p_{z}\right)<\pi^{*}\left(2 p_{x}\right)=\pi^{*}\left(2 p_{y}\right)<\sigma^{*}\left(2 p_{z}\right)$
(2) $\sigma(2 \mathrm{~s})<\sigma^{*}(2 \mathrm{~s})<\pi\left(2 p_{\mathrm{x}}\right)=\pi\left(2 p_{y}\right)<\sigma\left(2 p_{z}\right)<\sigma^{*}\left(2 p_{z}\right)<\pi^{*}\left(2 p_{\mathrm{y}}\right)=\pi^{*}\left(2 p_{\mathrm{z}}\right)$
(3) $\sigma(2 \mathrm{~s})<\sigma^{*}(2 \mathrm{~s})<\pi\left(2 p_{z}\right)=\pi\left(2 p_{y}\right)<\pi^{*}\left(2 p_{\mathrm{x}}\right)=\pi^{*}\left(2 p_{\mathrm{y}}\right)<\sigma^{*}\left(2 p_{\mathrm{y}}\right)<\sigma^{*}\left(2 p_{z}\right)$
(4) $\sigma(2 s)<\sigma^{*}(2 s)<\sigma\left(2 p_{z}\right)<\pi\left(2 p_{x}\right)=\pi\left(2 p_{y}\right)<\sigma^{*}\left(2 p_{z}\right)<\pi^{*}\left(2 p_{x}\right)=\pi^{*}\left(2 p_{y}\right)$

The total no. of electron in C_{2} molecule is <14.
73. How many bonds (bond order) does B_{2} have?
(1) 0
(2) 1
(3) 2
(4) 3

In B_{2} molecule B. $\mathrm{O}=\frac{6-4}{2}=1$
74. Which among the following molecules/ions is diamagnetic?
(1) Super oxide ion
(2) Oxygen
(3) Carbon molecule
(4) Unipositive ion of N_{2} molecule
There are no unpaired electrons in C^{2}
75. Which of the following contains maximum number of electrons in the antibonding molecular orbitals?
(1) O_{2}
(2) O_{2}^{2-}
(3) O_{2}^{-}
(4) O_{2}^{+}
O_{2}^{2-} has 4 electron in the π^{*} molecular orbitals
76. Which of the following molecules have unpaired electrons in antibonding molecular orbitals?
(1) O_{2}
(2) N_{2}
(3) C_{2}
(4) B_{2}
O_{2} is paramagnetic.
77. In which set of molecules are all the species paramagnetic?
(1) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$
(2) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{NO}$
(3) $\mathrm{B}_{2}, \mathrm{~F}_{2}, \mathrm{O}_{2}$
(4) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{Li}_{2}$
$\mathrm{B}_{2}, \mathrm{O}_{2}$ and NO have unpaired electrons

HYDROGEN BOND \& COORDINATE BOND

78. Hydrogen bonding is absent in
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) NH_{3}
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$

In order to form H -bonds the H atom has to be bonded to O, N or F
79. What is the maximum number of hydrogen bonds in which a water molecule can participate
(1) 1
(2) 2
(3) 3
(4) 4
80. Which of the following hydrogen halides is most volatile?
(1) HF
(2) HCl
(3) HBr
(4) HI
$\mathrm{H}-\mathrm{F}$ has intermolecular $\mathrm{H}-$ Bonding.
81. Amongst $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$, the one with the highest boiling point is
(1) $\mathrm{H}_{2} \mathrm{O}$ because of hydrogen bonding
(2) $\mathrm{H}_{2} \mathrm{Te}$ because of higher molecular weight
(3) $\mathrm{H}_{2} \mathrm{~S}$ because of hydrogen bonding
(4) $\mathrm{H}_{2} \mathrm{Se}$ because of lower molecular weight

Intermolecular H -bonding increases the boiling point
82. The boiling point is not affected due to hydrogen bonding in
(1) Water
(2) ammonia
(3) methyl alcohol
(4) hydrogen chloride

No H -bonding present in HCl molecules
83. Intramolecular H -bonding is present in
(1) o-Nitrophenol
(2) Salicylaldehyde
(3) m-Nitrophenol
(4) both (1) and (2)

84. Which of the following compounds has the least tendency to form hydrogen bonds between molecules?
(1) NH_{3}
(2) $\mathrm{NH}_{2} \mathrm{OH}$
(3) HF
(4) $\mathrm{CH}_{3} \mathrm{~F}$

In order to form H -bonds the H atom has to be bonded to O, N or F
85. Incorrect order of decreasing boiling points is
(1) $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
$\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>$
$\mathrm{H}_{2} \mathrm{~S}$
(3) $\mathrm{Br}_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$
(4) $\mathrm{CH}_{4}>\mathrm{GeH}_{4}>\mathrm{SiH}_{4}$

Boiling point increase with increase in molecular mass.
86. Which of the following has highest viscosity?
(1) Glycerol
(2) Glycol
(3) Ethanol
(4) Water
Duet o extensive intermolecular H-bonding

MISCELLANEOUS

33. If Z -axis is the molecular axis, then π-molecular orbitals are formed by the overlap of
(1) $s+p_{z}$
(2) $p_{x}+p_{y}$
(3) $p_{z}+p_{z}$
(4) $p_{x}+p_{x}$
π-bonds are perpendicular to σ-bonds
34. Which of the following combinations is not allowed (assumed Z-axis is internuclear axis)?
(1) $2 s$ and $2 s$
(2) $2 p_{x}$ and $2 p_{x}$
(3) $2 s$ and $2 p_{z}$
(4) $2 p_{x}$ and $2 p_{y}$

For effective overlap the orbitals should lie in a common plane.

Chemical Bonding
36. Among the following compounds, the one that is polar and has the central atom with sp^{2} hybridization is
(1) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(2) SiF_{4}
(3) BF_{3}
(4) HClO_{2}

48. Which of the following statements is correct?
(1) A σ bond is weaker than a π bond
(2) There are four coordinate bonds in the NH_{4}^{+}ion
(3) The covalent bond is directional in nature
(4) HF is less polar than HCl

Covalent bonds are associated with specific geometries
87. Which of the following does not contain any coordinate bond?
(1) $\mathrm{H}_{3} \mathrm{O}^{+}$
(2) BF_{4}^{-}
(3) HF_{2}^{-}
(4) NH_{4}^{+}
$\overline{\mathrm{HF}}_{2}$ has H -bonding.
88. Which of the following are isoelectonic and isostructural?
$\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}, \mathrm{ClO}_{3}^{-}$
(1) $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
(2) $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
(3) $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
(4) $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$

Both N and C are sp^{2} hybridation.
89. The correct order of $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ and O_{3} is
(1) $\mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}$
(2) $\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2}$
(3) $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{O}_{2}$
(4) $\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}$
Bond length $\propto 1 /$ B.O
90. The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is
(1) $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
(2) $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
(3) $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
(4) $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$

Bonding length $\propto \frac{1}{\text { Bondorder }}$

LEVEL - 2

IONIC BOND

1. Which one is the correct statement with reference to solubility of MgSO_{4} in water :
(1) Hydration energy of MgSO_{4} is higher in comparison to its lattice energy
(2) Ionic potential of Mg^{2+} is very low
(3) $\mathrm{SO}_{4}{ }^{2-}$ ion mainly contributes towards hydration energy
(4) Size of Mg^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are similar

Solubility increases with increase in hydration energy.
2. Condition for ionic bond formation is/are :
(a) Small cation, large anion
(b) Low IP of cation, high electron affinity
(c) Large cation, small anion and less charge
(d) Less lattice energy

Correct answer is:
(1) a, d
(2) b, c and d
(3) b and c
(4) a, b
I.P $\propto \frac{1}{\text { size of cation }}$
E.A $\propto \frac{1}{\text { size of antion }}$
3. The force responsible for dissolution of ionic compound in water is -
(1) Dipole - dipole forces
(2) Ion - dipole force
(3) Ion - ion force
(4) Hydrogen bond

Ionic compounds dissolve in water due to high polarity of $\mathrm{H}_{2} \mathrm{O}$ molecule
4. Born Haber cycle is mainly used to determine
(1) Lattice energy
(2) Electron affinity
(3) Ionisation energy
(4) Electronegativity
5. Highest melting point would be of
(1) AlCl_{3}
(2) LiCl
(3) NaCl
(4) BeCl_{2}
M. $\mathrm{P} \propto \frac{1}{\text { cov alent charater }}$
6. As compared to covalent compounds electrovalent compounds generally possess
(1) High m.p. and high b.p.
(2) Low m.p. and low b.p.
(3) Low m.p. and high b.p.
(4) high m.p. and low b.p.

Due to higher forces of attraction.
7. The electronic configuration of metal M is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$. The formula of its oxide will be:
(1) MO
(2) $\mathrm{M}_{2} \mathrm{O}$
(3) $\mathrm{M}_{2} \mathrm{O}_{3}$
(4) MO_{2}

The metal M has a valency of 1
8. Which of the following does not show electrical conduction?
(1) diamond
(2) graphite
(3) sodium chloride (fused)
(4) potassium

There are no free electrons in the structure of diamond
9. The most covalent halide is :-
(1) AlF_{3}
(2) AlCl_{3}
(3) AlBr_{3}
(4) AlI_{3}

Covalent character increases with increase in size of the anion.
10. LiCl is soluble in organic solvent while NaCl is not because :-
(1) Lattice energy of NaCl is less than that of LiCl
(2) Ionisation potential of Li is more than that of Na
(3) Li^{+}has more hydration energy that Na^{+}ion
(4) LiCl is more covalent compound than that NaCl

Like dissolves like
12. Correct order of covalent character of alkaline earth metal chloride in
(1) $\mathrm{BeCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{CaCl}_{2}<\mathrm{SrCl}_{2}$
(2) $\mathrm{BeCl}_{2}<\mathrm{CaCl}_{2}<\mathrm{SrCl}_{2}<\mathrm{MgCl}_{2}$
(3) $\mathrm{BeCl}_{2}>\mathrm{MgCl}_{2}>\mathrm{CaCl}_{2}>\mathrm{SrCl}_{2}$
(4) $\mathrm{SrCl}_{2}>\mathrm{BeCl}_{2}>\mathrm{CaCl}_{2}>\mathrm{MgCl}_{2}$

Smaller the cation greater will be the polarization
13. Which of the compound is least soluble in water
(1) AgF
(2) AgCl
(3) AgBr
(4) AgI
AgI has maximum covalent character
14. CCl_{4} is more covalent than LiCl because :
(1) There is more polarization of Cl in CCl_{4}
(2) There is more polarization of Cl in LiCl
(3) CCl_{4} has more weight
(4) None of above

Carbon is more electronegative than Li
15. The correct order of decreasing polarizable ions is :
(1) $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{F}^{-}$
(2) $\mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}$
(3) $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
(4) $\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$
Larger anion are readily polarized
16. Ionic conductances of hydrated M^{+}ions are in the order -
(1) $\mathrm{Li}^{+}(\mathrm{aq})>\mathrm{Na}^{+}(\mathrm{aq})>\mathrm{K}^{+}(\mathrm{aq})>\mathrm{Rb}^{+}(\mathrm{aq})>\mathrm{Cs}^{+}($aq $)$
(2) $\mathrm{Li}^{+}($aq $)>\mathrm{Na}^{+}($aq $)<\mathrm{K}^{+}($aq $)<\mathrm{Rb}^{+}($aq $)<\mathrm{Cs}^{+}($aq $)$
(3) $\mathrm{Li}^{+}(\mathrm{aq})>\mathrm{Na}^{+}($aq $)>\mathrm{K}^{+}($aq $)>\mathrm{Rb}^{+}($aq $)<\mathrm{Cs}^{+}($aq $)$
(4) $\mathrm{Li}^{+}(\mathrm{aq})<\mathrm{Na}^{+}(\mathrm{aq})<\mathrm{K}^{+}(\mathrm{aq})<\mathrm{Rb}^{+}(\mathrm{aq})<\mathrm{Cs}^{+}(\mathrm{aq})$

Smaller cations are more heavily hydrated
22. Correct order of melting point is ?
(1) $\mathrm{SnCl}_{2}>\mathrm{SnCl}_{4}$
(2) $\mathrm{SnCl}_{4}>\mathrm{SnCl}_{2}$
(3) $\mathrm{SnCl}_{2}=\mathrm{SnCl}_{4}$
(4) None of these
SnCl_{4} is more covalent than SnCl_{2} (fajan's rule)
23. Which of the following suffers a weight loss on heating :-
(1) $\mathrm{Li}_{2} \mathrm{CO}_{3}$
(2) Washing soda
(3) Both (1) and (2)
(4) None
$\mathrm{Li}_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} \mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+10 \mathrm{H}_{2} \mathrm{O} \uparrow$
24. On heating $\mathrm{Na}_{2} \mathrm{CO}_{3}$ gives :-
(1) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(2) $\mathrm{Na}_{2}+\mathrm{CO}_{3}$
(3) $\mathrm{Na}+\mathrm{CO}_{2}$
(4) None
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ is stable to heat
25. Correct order of melting point is :-
(1) $\mathrm{NaF}<\mathrm{MgF}_{2}<\mathrm{AlF}_{3}$
(2) $\mathrm{AlF}_{3}>\mathrm{NaF}>\mathrm{MgF}_{2}$
(3) $\mathrm{MgF}_{2}<\mathrm{NaF}<\mathrm{AlF}_{3}$
(4) None

Melting point of ionic solids is directly proportional to their lattice energies.

OCTET RULE

27. Which among the following shows the limitation of Lewis octet rule?
(1) CH_{4}
(2) NO
(3) CO_{2}
(4) $\mathrm{NH}_{4}{ }^{+}$

In NO molecule there is an incomplete octet on N -atom.
28. Which of the following is an example of expanded octet?
(1) SF_{6}
(2) PF_{5}
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(4) All of these

S and P have an expanded octet in the given compounds

COVALENT BOND

29. The strength of bonds by $2 \mathrm{~s}-2 \mathrm{~s}, 2 \mathrm{p}-2 \mathrm{p}$ and $2 \mathrm{p}-2 \mathrm{~s}$ overlapping has the order :-
(1) $\mathrm{s}-\mathrm{s}>\mathrm{p}-\mathrm{p}>\mathrm{s}-\mathrm{p}$
(2) $\mathrm{s}-\mathrm{s}>\mathrm{p}-\mathrm{s}>\mathrm{p}-\mathrm{p}$
(3) $\mathrm{p}-\mathrm{p}>\mathrm{s}-\mathrm{p}>\mathrm{s}-\mathrm{s}$
(4) $\mathrm{p}-\mathrm{p}>\mathrm{s}-\mathrm{s}>\mathrm{p}-\mathrm{s}$
p-orbitals have directional character and hence overlap more efficiently.
30. In which of the excitation state of chlorine ClF_{3} is formed :-
(1) In ground state
(2) In third excitation state
(3) In first excitation state
(4) In second excitation state

Chlorine will have 3 unpaired electron in its $1^{\text {st }}$ excited state and hence can form 3 bonds.
31. A sigma bond is formed by the overlapping of :-
(1) s-s orbital alone
(2) s and p orbitals alone
(3) s-s, s-p or p-p orbitals along intermuclear axis
(4) p-p orbital along the sides
σ-bonds are formed along the internuclear axis.
32. Which overlapping is involved in HCl molecule :-
(1) s-s overlap
(2) p-p overlap
(3) s-d overlap
(4) s-p overlap

HCl molecule involves s-p overlap of atomic orbitals.
33. Which is not characteristic of π - bond :-
(1) π-bond is formed when a sigma bond already formed
(2) π-bond are formed from hybrid orbitals
(3) π-bond may be formed by the overlapping of p-orbitals
(4) π-bond result from lateral overlap of atomic orbitals

Hybrid orbitals can form only sigma bonds.
34. π bond is formed :-
(1) By overlapping of hybridized orbitals
(2) Overlapping of $s-s$ orbitals
(3) Head on overlapping of $p-p$ orbitals
(4) By p - p lateral overlapping

Lateral overlapping of p orbitals gives rise to π-bonds .
35. p-p overlapping will be observed in the molecules of:
(1) Hydrogen
(2) Hydrogen bromide
(3) Hydrogen chloride
(4) Chlorine
In Cl_{2} molecule the Cl atoms use their outer most p -orbitals for bonding.
36. Which compound of xenon is not possible
(1) XeF_{2}
(2) XeF_{4}
(3) XeF_{5}
(4) XeF_{6}

The excited states of Xe atoms can result in the formation of 2, 4, 6 and 8 covalent bonds by Xe .
37. Higher is the bond order, greater is -
(1) Bond dissociation energy
(2) Covalent character
(3) Bond length
(4) Paramagnetism
B.D.E \propto Bond order
38. Which condition is not favourable for the combination of atomic orbitals:-
(1) The combining atomic orbitals nearly have the same energy
(2) The combining atomic orbitals must have the same symmetry about the molecular axis
(3) The combining orbitals must overlap to the maximum extent
(4) The combining orbitals must overlap to the minimum extent

The combining orbitals should have maximum overlap of the orbitals

HYBRIDISATION

39. In the protonation of $\mathrm{H}_{2} \mathrm{O}$, change occurs in
(1) Hybridisation state of oxygen
(2) Shape of molecule
(3) Hybridisation and shape both
(4) None

40. In the compound
$\stackrel{1}{\mathrm{C}} \mathrm{H}_{2}=\stackrel{2}{\mathrm{C}} \mathrm{H}-\stackrel{3}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{4}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{5}{\mathrm{C}} \equiv \stackrel{6}{\mathrm{C}} \mathrm{H}$, the $\mathrm{C}^{2}-\mathrm{C}^{3}$ bond is formed by the overlapping of :-
(1) $\mathrm{sp}-\mathrm{sp}^{2}$
(2) $\mathrm{sp}^{3}-\mathrm{sp}^{3}$
(3) $\mathrm{sp}-\mathrm{sp}^{3}$
(4) $\mathrm{sp}^{2}-\mathrm{sp}^{3}$

No. of σ-bonds formed by C atoms is equalt o the number of hybrid orbitals used.
41. Which of the following elements can not exhibit $\mathrm{sp}^{3} \mathrm{~d}$ hybridization state:-
(a) C
(b) P
(c) Cl
(d) B

Correct answer is :-
(1) a, c
(2) a, d
(3) b, c
(4) b, d

C and B do not have a d-orbitals.
42. Which of the following species are expected to be planar :-
(a) NH_{3}
(b) NH_{2}^{\oplus}
(c) CH_{3}^{+}
(d) PCl_{3}

The correct answer is :-
(1) b and c
(2) c and d
(3) b and d
(4) a and d

Both NH_{2}^{+}and $\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}$ have trigonal planar geometry.
43. In which following set of compound/ion has linear shaped
(1) $\mathrm{CH}_{4}, \mathrm{NH}_{4}^{+}, \mathrm{BH}_{4}^{-}$
(2) $\mathrm{CO}_{3}^{-2}, \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}$
(3) $\mathrm{NO}_{2}^{+}, \mathrm{CO}_{2}, \mathrm{XeF}_{2}$
(4) $\mathrm{BeCl}_{2}, \mathrm{BCl}_{3}, \mathrm{CH}_{4}$

Sp

Sp

$\mathrm{Sp}^{3} \mathrm{~d}$
44. Which of the following set is not correct :-
(1) $\mathrm{SO}_{3}, \mathrm{O}_{3}, \mathrm{NH}_{4}{ }^{+}$all have coordinate bonds
(2) $\mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{2}, \mathrm{ClO}_{2}^{-}$, all are V shape molecules
(3) $\mathrm{I}_{3}^{-}, \mathrm{ICl}_{2}^{-}, \mathrm{NO}_{2}^{+}$; all are linear molecules
(4) $\mathrm{SF}_{4}, \mathrm{SiF}_{4}, \mathrm{XeF}_{4}$ are tetrahedral in shape
SF_{4} : See-saw shape
SiF_{4} : Tetrahedral
XeF_{4} : square planar
45. Shape of a molecule having 4 bond pairs and two lone pairs of electrons, will be :-
(1) Square planar
(2) Tetra hedral
(3) Linear
(4) Octa hedral

Square planar shape.
46. The shape of IF_{4}^{+}will be :-
(1) Square planar
(2) Tetrahedral bipyramidal
(3) Pentagonal bipyramidal
(4)

Distorted tetrahedral

$+$
IF_{4} has irregular tetrahedral shape.
47. Which of the following has pyramidal shaped?
(1) BF_{3}
(2) $\mathrm{H}_{3} \mathrm{O}^{+}$
(3) NO_{3}^{-}
(4) $\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{H}_{2} \mathrm{O}^{+}$is isostructural to NH_{3}
48. A σ bonded molecule MX_{3} is T-shaped. The number of non-bonding pairs of electrons is
(1) 0
(2) 2
(3) 1
(4) Can be predicted if atomic number of M is known.

T -shaped geometry is obtained by $\mathrm{sp}^{3} \mathrm{~d}$ hybridization.
49. The type of hybrid orbitals used by chlorine atom in $\mathrm{ClO}^{-}, \mathrm{ClO}_{2}{ }^{-}, \mathrm{ClO}_{3}^{-}$and ClO_{4}^{-}is/are :-
(1) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$ and $\mathrm{sp}^{3} \mathrm{~d}$
(2) sp and sp^{3}
(3) Only sp^{3}
(4) only sp

The Cl atom shows sp^{3} hybridisation in all the given ions.
50. On the basis of hybridization of one s and one p orbitals they are arrange at :-
(1) Two orbitals mutually at 90° angle
(2) Two orbitals mutually at 180° angle
(3) Two orbitals mutually at 120° angle
(4) Two orbitals mutually at 150° angle

Sp hybridization gives linear geometry
51. Which of the following having a square planar structure is
(1) NH_{4}^{+}
(2) BF_{4}^{-}
(3) XeF_{4}
(4) CCl_{4}

square planar shape
52. When p-character of hybridized orbital (formed by s and p orbitals) increases. Then the bond angle
(1) Decreases
(2) Increases
(3) Becomes twice
(4) Remains unaltered
$\mathrm{Sp}: 180^{\circ}$
$\mathrm{Sp}^{2}: 120^{0}$
$\mathrm{Sp}^{3}: 109^{0} 28^{\prime}$
53. Which orbitals overlap to form bond in OF_{2}
(1) $\mathrm{sp}^{3}-2 \mathrm{p}$
(2) $\mathrm{sp}^{2}-2 \mathrm{p}$
(3) $\mathrm{sp}-2 \mathrm{p}$
(4) $\mathrm{p}-\mathrm{p}$

54. Among the following orbital/bonds, the angle is minimum between :
(1) sp^{3} bonds
(2) p_{x} and p_{y} orbitals
(3) $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond in water
(4) sp bonds
$P_{x}-P_{y}$ bond angle $=90^{\circ}$
55. The AsF_{5} molecule is trigonal bipyramidal. The hydrid orbitals used by the As atoms for bonding are
(1) $d_{x^{2}-y^{2}}, d_{z^{2}}, p_{x}, p_{y}$
(2) $d_{x y}, s, p_{x}, p_{y}, p_{z}$
(3) $\mathrm{s}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}, \mathrm{d}_{\mathrm{z}}$
(4) $d_{x^{2}-y^{2}}, s, p_{x}, p_{y}$

In tbp geometry the orbitals used are $\mathrm{S}, \mathrm{Px}, \mathrm{Py}, \mathrm{Pz}, \mathrm{dx}^{2}$
56. When the hybridization state of carbon atom changes from $\mathrm{sp}^{3}, \mathrm{sp}^{2}$ and sp , the angle between the hybridized orbitals.
(1) decrease considerably
(2) increase progressively
(3) decrease gradually
(4) all of these
Sp^{3} : $109^{0} 28^{\prime}$
$\mathrm{Sp}^{2}: 120^{0}$
$\mathrm{Sp}: 180^{0}$
57. The hybridization states of the central atoms of the ions $\mathrm{I}_{3}^{-}, \mathrm{ICl}_{4}^{-}$and ICl_{2}^{-}are respectively :
(1) $\mathrm{sp}^{2}, \mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}^{3}$
(2) $\mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}^{3} \mathrm{~d}^{2}$ and $\mathrm{sp}^{3} \mathrm{~d}$
(3) $\mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}$
(4) $\mathrm{sp}, \mathrm{sp}, \mathrm{sp}^{2}$

sp $^{3} \mathrm{~d}$

$$
\mathrm{sp}^{3} \mathrm{~d}^{2}
$$

$\mathrm{sp}^{3} \mathrm{~d}$
58. Molecular shapes of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are :-
(1) The same, with 2, 0 and 1 lone pairs of electrons respectively
(2) The same, with 1, 1 and 1 lone pairs of electrons respectively
(3) Different, with 0,1 and 2 lone pairs of electrons respectively
(4) Different, with 1, 0 and 2 lone pairs of electrons respectively

59. Which of the following two are isostructural :-
(1) $\mathrm{XeF}_{2}, \mathrm{IF}_{2}^{-}$
(2) $\mathrm{NH}_{3}, \mathrm{BF}_{3}$
(3) $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
(4) $\mathrm{PCl}_{5}, \mathrm{ICl}_{5}$

Isostructural are also isoelectronic
60. Select the correct matching :

	List I			List II
A.	XeF_{4}		1.	Pyramidal
B.	XeF_{6}		2.	T-shape
C.	XeO_{3}		3.	Distorted octahedral
D.	XeOF_{2}		4.	Square planar
	B	C	D	
(1)	3	1	2	
(2)	2	3	4	
(3)	1	3	4	
(4)	1	3	2	

61. Which one of the following pair is a correct with respect to molecular formula of xenon compound and hybridization state of xenon in it :
(1) $\mathrm{XeF}_{4}, \mathrm{sp}^{3}$
(2) $\mathrm{XeF}_{2}, \mathrm{sp}$
(3) $\mathrm{XeF}_{2}, \mathrm{sp}^{3} \mathrm{~d}$
(4) $\mathrm{XeF}_{4}, \mathrm{sp}^{2}$
$\mathrm{XeF}_{4}: \mathrm{sp}^{3} \mathrm{~d}^{2}$
$\mathrm{XeF}_{2}: \mathrm{sp}^{3} \mathrm{~d}$
62. The molecule does not have bent shape :-
(1) SO_{2}
(2) O_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) NH_{4}^{+}

63. Which among the given choice does not have the same hybridization and geometry of $\left(\mathrm{PCl}_{6}\right)^{-}$?
(1) $\left(\mathrm{SiF}_{6}\right)^{2-}$
(2) XeF_{6}
(3) SF_{6}
(4) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

$\mathrm{Sp}^{3} \mathrm{~d}^{2}$ octahedral shape

Sp $^{3} \mathrm{~d}^{3}$ distorted octahedral
64. Incorrect regarding the hybridization is :-
(1) The number of hybrid orbitals are equal to the number of the atomic orbitals that get hybridized
(2) The hybrid orbital are always equivalent in energy and shape
(3) The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals
(4) Overlapping and hybridization are same phenomenon

Hybridisation process involves the mixing of orbitals of the same atom.
65. The percent s-character in CH_{4} is :-
(1) 100%
(2) 45%
(3) 75%
(4) 25%
$\mathrm{CH}_{4} \mathrm{sp}^{3}$ dybridisation

DIPOLE MOMENT

66. Which statement is correct :-
(1) All the compounds having polar bonds, have dipole moment
(2) SO_{2} is non-polar
(3) $\mathrm{H}_{2} \mathrm{O}$ molecule is non polar, having polar bonds
(4) PH_{3} is polar molecule having non polar bonds

67. BeF_{2} has zero dipole moment where as $\mathrm{H}_{2} \mathrm{O}$ has a dipole moment because :-
(1) Water is linear
(2) $\mathrm{H}_{2} \mathrm{O}$ is bent
(3) F is more electronegative that O
(4) Hydrogen bonding is present in $\mathrm{H}_{2} \mathrm{O}$

$\mu=0$
68. Which of the following molecule have zero dipole moment :-
(1) BF_{3}
(2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(3) NF_{3}
(4) SO_{2}

Sp^{2}
symmetrical molecule
69. The dipole moment of NH_{3} is :-
(1) Less than dipole moment of NCl_{3}
(2) Higher than dipole moment of NCl_{3}
(2) Equal to the dipole moment of NCl_{3}
(4) None of these

In NCl_{3} the difference in electronegativity is less.
70. Which set of molecules is polar :-
(1) $\mathrm{XeF}_{4}, \mathrm{IF}_{7}, \mathrm{SO}_{3}$
(2) $\mathrm{PCl}_{5}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{SF}_{6}$
(3) $\mathrm{SnCl}_{2}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$
(4) $\mathrm{CO}_{2}, \mathrm{CS}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}$

$\mu \neq 0$

$$
\mu \neq 0
$$

71. Which of the following has symmetrical structure :
(1) PCl_{3}
(2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(3) CHCl_{3}
(4) CCl_{4}
 sp^{3} hybridisation Tetrahedral geometry.
72. Species having zero dipole moment :-
(1) XeF_{4}
(2) 1,2,4 trichloro benzene
(3) SF_{4}
(4) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

square planar shape
73. What conclusion can be drawn from the fact that BF_{3} has no dipole moment but PF_{3} does
(1) BF_{3} is not symmetrical but PF_{3} is
(2) BF_{3} molecule must be linear
(3) Atomic radius of P is larger than that of B
(4) BF_{3} molecule must be planar triangular

74. PCl_{5} is non polar because :-
(1) $\mathrm{P}-\mathrm{Cl}$ bond is non-polar
(2) Its dipole moment is zero
(3) $\mathrm{P}-\mathrm{Cl}$ bond is polar
(4) P and Cl have equal electronegativity

tbp geometry (symmetrical molecule)
75. Dipole moment of CO_{2} is zero which implies that:
(1) Carbon and oxygen have equal electronegativities
(2) Carbon has no polar bond
(3) CO_{2} is a linear molecule
(4) Carbon has bond moments of zero value
$\mathrm{O}=\mathrm{C}=\mathrm{O}$ linear geometry
76. The correct order of dipole moment is :
(1) $\mathrm{CH}_{4}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}$

Dipole moment of $\mathrm{CH}_{4}=0$
$\mathrm{H}_{2} \mathrm{O}$ has the highest dipole moment due to max. electronegativity difference and minimum bond angle.
77. Which of the following has the highest value of dipole moment :
(1) HCl
(2) HF
(3) HI
(4) HBr
78. Which compounds has permanent dipole moment :
(A) BF_{3}
(B) SiF_{4}
(C) SF_{4}
(D) XeF_{4}
(E) XeF_{2}
(F) CHCl_{3}
(1) $\mathrm{A} \& \mathrm{~B}$
(2) $\mathrm{C} \& \mathrm{D}$
(3) D, E \& F
(4) $C \& F$
79. Which molecule has largest dipole moment :
(1) CH_{4}
(2) CHCl_{3}
(3) CCl_{4}
(4) CHI_{3}
CH_{4} and $\mathrm{CCl}_{4} \mu=0$
$\mathrm{CHCl}_{3}>\mathrm{CHI}_{3}$
Due to higher difference in electronegativity.
80. Which of the following is the most polar :-
(1) CCl_{4}
(2) CHCl_{3}
(3) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(4) $\mathrm{CH}_{3} \mathrm{Cl}$
81. The molecule does not have zero dipole moment :-
(1) CO_{2}
(2) CCl_{4}
(3) BF_{3}
(4) HCl
82. Which of the following compound possess dipole moment :-
(1) Water
(2) Boron trifluoride
(3) Benzene
(4) Carbon tetra chloride

MOLECULAR ORBITAL THEORY

83. The ion that is isoelectronic with CO and having same bond order is :-
(1) CN^{-}
(2) $\mathrm{O}_{2}{ }^{+}$
(3) O_{2}^{-}
(4) $\mathrm{N}_{2}{ }^{+}$

Both CO and CN^{-}have the same bond order as they are isoelectronic
84. Which of the following is paramagnetic :-
(1) $\mathrm{O}_{2}{ }^{-}$
(2) CN^{-}
(3) CO
(4) NO^{+}
O_{2}^{-}has one unpaired electron in its π^{*} orbital
85. In the following which of the two are paramagnetic
(a) N_{2}
(b) CO
(c) B_{2}
(d) NO_{2}

Correct answer is :
(1) a and c
(2) band c
(3) c and d
(4) b and d
B_{2} and NO_{2} are paramagnetic due to presence of unpaired electrons in their molecular orbitals
86. The bond order of CO molecular on the basis of molecular orbital theory is
(1) Zero
(2) 2
(3) 3
(4) 1
B. O of $\mathrm{CO}=3$
$\mathrm{N}_{\mathrm{b}}=10 \mathrm{~N}_{\mathrm{a}}=4$
B. $\mathrm{O}=\frac{10-4}{2}=3$
87. Which of the following species will have the minimum bond energy
(1) N_{2}
(2) $\mathrm{N}_{2}{ }^{-}$
(3) $\mathrm{N}_{2}{ }^{+}$
(4) $\mathrm{N}_{2}{ }^{-2}$

Higher the B.O. higher is the bond energy.
88. Which of the following ion do not have bond order of 2.5 ?
(1) O_{2}
(2) $\mathrm{O}_{2}{ }^{+}$
(3) $\mathrm{N}_{2}{ }^{+}$
(4) $\mathrm{N}_{2}{ }^{-}$
O_{2}^{-}has a bond order of 1.5
89. The electron adds to which one of the following orbitals during change of N_{2} to $\mathrm{N}_{2}{ }^{-}$.
(1) σ orbital
(2) σ^{*} orbital
(3) π^{*} orbital
(4) π orbital

The electron adds to a $\pi *$ molecular orbital
90. In which of the following species removal of electron exhibit a decrease in paramagnetic behavior?
(1) F_{2}
(2) N_{2}
(3) C_{2}
(4) B_{2}
B_{2} molecule has 2 unpaired electrons .
91. Pick the wrong statement w.r.t. molecular orbital theory (MOT).
(1) Participation of orbital of comparable energies takes place.
(2) The electron is under the influence of two or more than two nuclei.
(3) The molecular orbital formed is equal to the number of atomic orbitals combined
(4) The probability of electron distribution in a molecule is given by atomic orbitals only.

Molecular orbtials are formed by the LCAO method.
92. Which among the following species is does not exist?
(1) $\mathrm{He}_{2}{ }^{+}$
(2) $\mathrm{H}_{2}{ }^{+}$
(3) $\mathrm{H}_{2}{ }^{-}$
(4) Be_{2}
Bond order in $\mathrm{Be}_{2}=\mathrm{O}$
93.
94. The given species not having the same bond order as of other three :-
(1) $\mathrm{He}_{2}{ }^{+}$
(2) $\mathrm{H}_{2}{ }^{+}$
(3) H_{2}^{-}
(4) Li_{2}
$\mathrm{He}_{2}^{+}, \mathrm{H}_{2}^{+}$and H_{2}^{-}has a B.O $=0.5$
95. The minimum bond length will be observed in :-
(1) O_{2}
(2) $\mathrm{O}_{2}{ }^{-}$
(3) $\mathrm{O}_{2}{ }^{+}$
(4) $\mathrm{O}_{2}{ }^{2-}$

Bond length $\propto \frac{1}{\text { Bond order }}$
96. Which among the given pair of molecules consists only of $\operatorname{Pi}(\pi)$ bonds?
(1) B_{2} and F_{2}
(2) B_{2} and C_{2}^{2+}
(3) N_{2} and O_{2}
(4) C_{2} and N_{2}

Both $\mathrm{B}_{2}+\mathrm{C}_{2}^{2+}$ consists of pi bonds only.
99. Which molecule does not exist :
(1) He_{2}
(2) O_{2}
(3) N_{2}
(4) B_{2}
Bond order of $\mathrm{He}_{2}=\mathrm{O}$
100. Which is correct electronic configuration for C_{2} molecule according to M.O.T.
(1) $\mathrm{KK}(\sigma 2 \mathrm{~S})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{Px}^{2}=\pi 2 \mathrm{Py}^{2}\right)$
(2) $\mathrm{KK}\left(\sigma 2 \mathrm{~s}^{2}\right)\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{Px}^{1}=\pi 2 \mathrm{Py}^{1}\right) \sigma 2 \mathrm{Pz}^{2}$
(3) $\mathrm{KK}\left(\sigma^{*} 2 \mathrm{~s}^{2}\right)(\sigma 2 \mathrm{~s})^{2}\left(\pi 2 \mathrm{Px}^{2}=\pi 2 \mathrm{Py}^{2}\right)$
(4) $\mathrm{KK}\left(\sigma 2 \mathrm{~s}^{2}\right)\left(\sigma^{*} 2 \mathrm{~s}^{2}\right)^{2} \sigma 2 \mathrm{Pz}^{2}\left(\pi 2 \mathrm{Px}^{1}=\pi 2 \mathrm{Py}^{1}\right)$
C_{2} molecule consists of 12 electrons
101. The molecule/species having highest bond order :-
(1) O_{2}
(2) O_{2}^{-}
(3) O_{2}^{+}
(4) O_{2}^{-2}
B. $\mathrm{O} \propto$ no. of electrons in BMO's
102. The calculated bond order in H_{2}^{-}ion is :-
(1) 0
(2) $\frac{1}{2}$
(3) $-\frac{1}{2}$
(4) 1
$\mathrm{H}_{2}^{-} \mathrm{B} . \mathrm{O}=0.5$
103. O_{2} molecule is paramagnetic due to :-
(1) It contains 2 unpaired electrons in $\pi^{*} 2 \mathrm{Px}$ and $\pi^{*} 2 \mathrm{Py}$ molecular orbitals
(2) It contains no unpaired electrons in $\pi^{*} 2 P x$ and $\pi^{*} 2 P y$ molecular orbitals
(3) It contains 2 paired electrons in $\sigma 2$ s orbital
(4) It contains 1 unpaired electrons in $\sigma 2$ s orbital

There are 2 unpaired electrosn in the π^{*} Molecular orbitals in O_{2}
104. Which is not correct according to M.O.T.
(1) $\mathrm{Nb}>\mathrm{Na}$
Positive bond order
(2) $\mathrm{Nb}<\mathrm{Na} \quad$ Negative bond order
(3) $\mathrm{Nb}=\mathrm{Na} \quad$ Zero bond order
(4) $\mathrm{Nb}>\mathrm{Na}$
Negative bond order

When $\mathrm{N}_{\mathrm{b}}>\mathrm{N}_{\mathrm{a}}$ then B.O. will be +ve
105. The molecule having bond order 3 is :-
(1) H_{2}
(2) N_{2}
(3) O_{2}
(4) $\mathrm{He}_{2}{ }^{+}$
N_{2} has a bond order of 3
106. Which is correct electronic configuration for singly positive nitrogen molecule :-
(1) $\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \pi 2 p_{x}{ }^{2} \pi 2 p_{y}{ }^{2} \sigma 2 p_{z}{ }^{1}$
(2) $\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{x}{ }^{2} \pi 2 p_{y}{ }^{2} \pi 2 p_{z}{ }^{1}$
(3) $\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{z}{ }^{2} \pi 2 p_{x}{ }^{2} \pi 2 p_{\mathrm{y}}{ }^{1}$
(4) $\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}{ }^{2} \pi 2 \mathrm{p}_{\mathrm{x}}{ }^{2} \pi 2 \mathrm{p}_{\mathrm{z}}{ }^{1}$
N_{2}^{+}is a 13 electron system
107. Two nodal planes are present in :-
(1) $\pi^{*} 2 p_{x}$
(2) $\sigma 2 p_{z}$
(3) $\pi 2 p_{x}$
(4) $\pi 2 p_{y}$
108. Which is the most stable :-
(1) N_{2}
(2) N_{2}^{+}
(3) N_{2}^{-}
(4) N_{2}^{-2}
B. $\mathrm{O} \propto$ statbility
109. Which set of molecules having same sequence of energy levels.
(1) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$
(2) $\mathrm{O}_{2}, \mathrm{Be}_{2}, \mathrm{~F}_{2}$
(3) $\mathrm{B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}$
(4) $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~B}_{2}$
$\mathrm{B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}$ have 14 or <14 electrons

COORDINATE BOND

110. In Co-ordinate bond, the acceptor atoms must essentially contain in its valency shell an orbital:-
(1) With paired electron
(2) With single electron
(3) With no electron
(4) With three electron

The acceptor atom should accept the electron pair to form a coordinate bond
111. The bonds present in $\mathrm{N}_{2} \mathrm{O}_{5}$ are :-
(1) Only ionic
(2) Covalent and coordinate
(3) Only covalent
(4) Covalent and ionic
112. Dative bond is present in
(1) SO_{3}
(2) NH_{3}
(3) $\mathrm{K}_{2} \mathrm{CO}_{3}$
(4) BF_{3}
113. The compound containing co-ordinate bond is:
(1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(2) O_{3}
(3) SO_{3}
(4) All of these

WEAK FORCES

114. Intermolecular hydrogen bonds are not present in :-
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{CH}_{3} \mathrm{COOH}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
(4) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

In order to from H -bonds the H -atom should be directly bonded to O, N, or F
115. In which of the following molecule, the shown hydrogen bond is not possible :
(1)

(2)

(3)

(4)

p-nitrophenol forms intermolecular H -bonds
116. Correct order of volatility is :-
(1) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
(2) $\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}>\mathrm{HF}$
(3) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
(4) $\mathrm{HBr}<\mathrm{HCl}<\mathrm{HI}<\mathrm{HF}$

HF has intermolecular H-bonds
117. The correct order of volatility is :-
(1) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(2) p-nitro phenol < o-nitro phenol
(3) $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
(4) $\mathrm{HF}>\mathrm{HCl}$
p-nitrophenol forms intermolecular H -bonds
118. The incorrect order of decreasing boiling points is
(1) $\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}$
(2)
$\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$
(3) $\mathrm{Br}_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$
(4) $\mathrm{CH}_{4}>\mathrm{GeH}_{4}>\mathrm{SiH}_{4}$

Boiling point α molecular mass
119. Acetic acid exists as dimer in benzene due to :-
(1) Condensation reaction
(2) Hydrogen bonding
(3) Presence of carboxyl group
(4) None of the above

120. Maximum no. of hydrogen bonds formed by a water molecule in ice is
(1) 4
(2) 3
(3) 2
(4) 1

121. Strongest hydrogen bond is shown by:
(1) Water
(2) Ammonia
(3) Hydrogen fluoride
(4) Hydrogen sulphide
H -F forms the strongest H -bond
122. Density of ice is less than that of water because of
(1) presence hydrogen bonding
(2) crystal modification of ice
(3) open porous structure of ice due to hydrogen bonding
(4) different physical states of these

The porous structure in ice decreases the density.
123. NH_{3} has abnormally high boiling point because it has :
(1) Alkaline nature
(2) Distorted shape
(3) $\mathrm{sp}^{3}-$ Hybridisation
(4) Hydrogen bonding H -bonding in NH_{3} increases its boiling point?
124. Which of the following is soluble in water?
(1) CS_{2}
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(3) CCl_{4}
(4) CHCl_{3}
Due to H -bonding
125. KF combines with HF to form KHF_{2}. The compound contains the species :
(1) $\mathrm{K}^{+}, \mathrm{F}^{-}$and H^{+}
(2) $\mathrm{K}^{+}, \mathrm{F}^{-}$and HF
(3) K^{+}and $\left[\mathrm{HF}_{2}\right]^{-}$
(4) $[\mathrm{KHF}]^{+}$and F_{2}
$\mathrm{K}^{+} \mathrm{F}^{-} \ldots . . . \mathrm{H}-\mathrm{F}$

ASSERTION \& REASON

Read the assertion and reason carefully to mark the correct option out of the options given below :
(a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
(b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
(c) If assertion is true but reason is false.
(d) If the assertion and reason both are false.
(e) If assertion is false but reason is true.

1. Assertion : Water is a good solvent for ionic compounds but poor one for covalent compounds. Reason : Hydration energy of ions releases sufficient energy to overcome lattice energy and break hydrogen bonds in water, while covalent bonded compounds interact so weakly that even Vander Waal's forces between molecules of covalent compounds cannot be broken.
(a)
2. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecules are polar.
Reason : In a polar covalent molecule, the shared electrons spend more time on the average near one of the atoms?
(a)
3. Assertion : Diborane is electron deficient

Reason : There are no enough valence electrons to form the expected number of covalent bonds
(a)
4. Assertion : A resonance hybrid is always more stable than any of its canonical structures

Reason : This stability is due to delocalization of electrons
(a)
5. Assertion : All F-S - F angle in SF_{4} greater than 90° but less than 180°

Reason : The lone pair-bond pair repulsion is weaker than bond pair-bond pair repulsion.
(c)
6. Assertion : Bond order can assume any value number including zero

Reason : Higher the bond order, shorter is bond length and greater is bond energy
(b)
7. Assertion : Ortho nitrophenol molecules are associated due to the presence of intermolecular hydrogen bonding while paranitrophenol involves intramolecular, hydrogen bonding
Reason : Ortho nitrophenol is more volatile than the paranitrophenol
(e)
8. Assertion : Nitrogen molecule is diamagnetic.

Reason : N_{2} molecule have unpaired electrons.
(c)
9. Assertion : Ice is less dense than liquid water.

Reason : There are vacant spaces between hydrogen bonded water molecules in ice.
(a)
10. Assertion : Water is liquid but $\mathrm{H}_{2} \mathrm{~S}$ is a gas.

Reason : Oxygen is paramagnetic.
(b)
11. Assertion : Iodine is more soluble in water then in carbon tetrachloride.

Reason : Iodine is a polar compound.
(d)
12. Assertion : o and p-nitrophenols can be separated by steam distillation.

Reason : o-nitrophenol have intramolecular hydrogen bonding while p-nitrophenol exists as associated molecules.
(a)
13. Assertion : Fluorine has lower reactivity.

Reason : $\mathrm{F}-\mathrm{F}$ bond has low bond dissociation energy.
(e)
14. Assertion : $\quad \sigma$ is strong while π is a weak bond.

Reason : Atoms rotate freely about π bond.
(c)
15. Assertion : The crystal structure gets stabilized even though the sum of electron gain enthalpy and ionization enthalpy is positive.
Reason : Energy is absorbed during the formation of crystal lattice.
(c)
16. Assertion : Order of lattice energy for same halides are as $\mathrm{LiX}>\mathrm{NaX}>\mathrm{KX}$

Reason : Size of alkali metal increases from Li to K .
(a)
17. Assertion : Born-Haber cycle is based on Hess's law.

Reason : Lattice enthalpy can be calculated by Born- Haber cycle.
(b)
18. Assertion : Bond energy has order like $\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}<\mathrm{C} \equiv \mathrm{C}$.

Reason : Bond energy increases with increase in bond order.
(a)
19. Assertion : Electron affinity refers to an isolated atom's attraction for an additional electron while electronegativity is the ability of an element to attract electrons towards itself in a shared pair of electrons.
Reason : Electron affinity is a relative number and electronegativity is experimentally measurable.
(c)
20. Assertion : Geometry of SF_{4} molecule can be termed as distorted tetrahedron, a folded square or see saw.
Reason : Four fluorine atoms surround or form bond with sulphur molecule.
(b)
21. Assertion : BF_{3} has greater dipole moment than $\mathrm{H}_{2} \mathrm{~S}$.

Reason : Fluorine is more electronegative than sulphur.
(e)
22. Assertion : The bond between two identical nonmetal atoms has a pair of electrons with identical spin.
Reason : Electrons are transferred fully from one atom to another.
(d)
23. Assertion : B_{2} molecule is diamagnetic.

Reason : The highest occupied molecular orbital is of σ type.
(d)
24. Assertion : The nearly tetrahedral arrangement of the orbitals about the oxygen atom allows each ice molecule to form hydrogen bonds with as many as four neighbouring water molecules.
Reason : In ice each molecule forms four hydrogen bonds as each molecule is fixed in the space.
(a)
25. Assertion : The bond order of helium is always zero.

Reason : The number of electrons in bonding molecular orbital and antibonding molecular orbital is equal.
(a)

PREVIOUS YEARS QUESTIONS

1. Among the following group which represents the collection of isoelectronic species?
[CBSE AIMPT 2000]
(a) $\mathrm{NO}, \mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{O}_{2}^{-}$
(b) $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2}, \mathrm{O}_{2}^{-}, \mathrm{CO}$
(c) $\mathrm{N}_{2}, \mathrm{C}_{2}^{2-}, \mathrm{CO}, \mathrm{NO}$
(d) $\mathrm{CO}, \mathrm{NO}^{+}, \mathrm{CN}^{-}, \mathrm{C}_{2}^{2-}$

Species having equal number of electrons are known as isoelectronic species.
Number of electrons,
In $\mathrm{CO}=6+8=14$
In $\mathrm{NO}^{+}=7+8-1=14$
In $\mathrm{CN}^{-}=6+7+7=14$
In $\mathrm{C}_{2}^{2-}=12+2=14$
Hence, all have 14 electrons, so they are isoelectronic species
2. Which one of the following is not paramagnetic?
[CBSE AIPMT 2000]
(a) NO
(b) N_{2}^{+}
(c) CO
(d) O_{2}^{-}

Paramagnetic character is shown by those atoms or molecules which have unpaired electrons.
In the given compounds CO is not paramagnetic since, it does not have unpaired electrons. The configuration of CO molecule is

$$
\mathrm{CO}(14)=\sigma 1 \mathrm{~s}^{2}, \dot{\sigma} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \dot{\sigma} 2 \mathrm{~s}^{2}, \sigma 2 p_{\mathrm{x}}^{2}, \pi 2 \mathrm{p}_{\mathrm{y}}^{2}=\pi 2 \mathrm{p}_{\mathrm{z}}^{2}
$$

3. The relationship between the dissociation energy of N_{2} and N_{2}^{+}is
[CBSE AIPMT 2000]
(a) dissociation energy of $\mathrm{N}_{2}^{+}>$dissociation energy of N_{2}
(b) dissociation energy of $\mathrm{N}_{2}=$ dissociation energy of N_{2}^{+}
(c) dissociation energy of $\mathrm{N}_{2}>$ dissociation energy of N_{2}^{+}
(d) dissociation energy of N_{2} can either be lower or higher than the dissociation energy of N_{2}^{+}

The dissociation energy will be more when the bond order will be greater and bond order \propto dissociation energy Molecular orbital configuration of
$\mathrm{N}_{2}(14)=\sigma 1 \mathrm{~s}^{2}, \dot{\sigma} 1 \mathrm{~s}^{2}, \sigma 1 \mathrm{~s}^{2}, \dot{\sigma} 2 \mathrm{~s}^{2}, \pi 2 \mathrm{p}_{\mathrm{y}}^{2}=\pi 2 \mathrm{p}_{\mathrm{z}}^{2}, \sigma 2 \mathrm{p}_{\mathrm{x}}^{2}$
So bond order of
$\mathrm{N}_{2}=\frac{\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}}{2}=\frac{10-4}{2}=3$
And bond order of $\mathrm{N}_{2}^{+}=\frac{9-4}{2}=2.5$
As the bond order of N_{2} is greater than N_{2}^{+}so, the dissociation energy of N_{2} will be greater than N_{2}^{+}.
4.
5. Which one of the following is planar?
(a) XeF_{4}
(b) XeO_{4}
(c) $\mathrm{XeO}_{3} \mathrm{~F}$
[CBSE AIMPT 2000]
Structure of XeF_{4} is as follows

It involves $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation in Xe -atom. The molecules has square planar structure. Xe and four F -atoms are coplanar. The lone pair are present on axial positions, minimize electron pair repulsion.
6. A compound contains atoms A, B and C. If the oxidation number of A is $+2, \mathrm{~B}$ is +5 and that of C is -2 , the possible formula of the compound is
[CBSE AIMPT 2000]
(a) $\mathrm{A}_{2}\left(\mathrm{BC}_{3}\right)_{2}$
(b) $\mathrm{A}_{3}\left(\mathrm{BC}_{4}\right)_{2}$
(c) $\mathrm{A}_{3}\left(\mathrm{~B}_{4} \mathrm{C}\right)_{2}$
(d) ABC_{2}

In $\mathrm{A}_{3}\left(\mathrm{BC}_{4}\right)_{2} 3 \mathrm{x}$ oxidation number of $\mathrm{A}+2$ [oxidation number of $\mathrm{B}+4 \times$ oxidation number of C] $=0$ $3 \times(+2)+2[5+4 \times(-2)]=0$
$6+2[-3]=0$
7. Main axis of a diatomic molecule is z, molecular orbital p_{x} and p_{y} overlaps to form which of the following orbitals.
[CBSE AIMPT 2001]
(a) π-molecular orbital
(b) σ-molecular orbital
(c) δ-molecular orbital
(d) No bond will form

For π-overlap the lobes of the atomic orbitals are perpendicular to the line joining the nuclei

8. In $\mathrm{X}-\mathrm{H}---\mathrm{Y}$, X and Y both are electronegative elements, then
[CBSE AIMPT 2001]
(a) electron density on X will increases and on H will be decrease
(b) In both electron density will increase
(c) in both electron density will decrease
(d) On X electron density will decrease and on H increase

In $\mathrm{X}-\mathrm{H}-\mathrm{Y}, \mathrm{X}$ and Y both are electronegative elements, then electron density on X will increase and on H will decrease.
9. Which of the following two are isostructural?
[CBSE AIPMT 2001]
(a) XeF_{2} and IF_{2}^{-}
(b) NH_{3} amd BF_{3}
(c) CO_{3}^{2-} and SO_{3}^{2-}
(d) PCl_{5} and ICl_{5}

Compounds having same structure and same hybridization are known as isostructural species e.g.
XeF_{2} and IF_{2}^{-}are sp ${ }^{3} \mathrm{~d}$ hybridized and same hybridization and both have linear shape.
$\mathrm{F}-\mathrm{I}^{-}-\mathrm{FF}-\mathrm{Xe}-\mathrm{F}$
10. In which of the following, bond angle is maximum?
[CBSE AIPMT 2001]
(a) NH_{3}
(b) NH_{4}^{+}
(c) PCl_{3}
(d) SCl_{2}

In NH_{4}^{+}bond angle is maximum (nearer 109°) due to its tetrahedral geometry.
11. Which of the following has $\mathrm{p} \pi-\mathrm{d} \pi$ bonding
[CBSE 2002]
(a) NO_{3}^{-}
(b) CO_{3}^{-2}
(c) BO_{3}^{-3}
(d) SO_{3}^{-2}
12. In NO_{3}^{-}ion number of bond pair and lone pair of electrons on nitrogen atom are
[CBSE AIPMT 2002]
(a) 2,2
(b) 3,1
(C) 1, 3
(d) 4,0

In NO_{3}^{-}ion

Nitrogen has four bond pair and zero lone pair of electrons, due to the presence of one coordination bond.
13. In a regular octahedral molecule, MX_{6}, the number $\mathrm{X}-\mathrm{M}-\mathrm{X}$ bonds at 180° is [CBSE PMT 2004]
(a) Six
(b) Four
(c) Three
(d) Two

In octahedral structure $M X_{6}$, the six hubrid orbitals $\left(\mathrm{sp}^{3} \mathrm{~d}^{2}\right)$ are directed towards the corners of a regular octahedral with an angle of 90°. According to following structure of MX_{6}, the number of X -$\mathrm{M}-\mathrm{X}$ bonds at 180° must be three.

14. In an octahedral structure, the pair of d orbitals involved in $s p^{3} d^{2}$ hybridization is
[CBSE PMT 2004]
(a) $d_{x^{2}}, d_{x z}$
(b) $\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{yz}}$
(c) $d_{x^{2}-y^{2}}, d_{z^{2}}$
(d) $d_{x z}, d_{x^{2}-y^{2}}$

In the formation of $d^{2} \operatorname{sp}^{3}$ hybrid orbitals, two $(n-1) d$-orbitals of e_{g} set i.e., $(n-1) d_{z^{2}}$ and $(n-1)$ $\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$ orbitals, one n s and three $\mathrm{np}\left(\mathrm{np}_{\mathrm{x}}, \mathrm{np}_{\mathrm{y}}\right.$ and $\left.n p_{z}\right)$ orbitals combine together.
15. Among the following the pair in which the two species are not isostructural is
[CBSE PMT 2004]
(a) BH_{4}^{-}and NH_{4}^{+}
(b) PF_{6}^{-}and SF_{6}
(c) SiF_{4} and SF_{4}
(d) IO_{3}^{-}and XeO_{3}
16. $\quad \mathrm{H}_{2} \mathrm{O}$ is dipolar, when BeF_{2} is not $=$. It is because
[CBSE AIPMT 2004]
(a) the electronegativity of F is greater than that of O
(b) $\mathrm{H}_{2} \mathrm{O}$ involves hydrogen bonding whereas BeF_{2} is a discrete molecule
(c) $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} is angular
(d) $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear

The structure of $\mathrm{H}_{2} \mathrm{O}$ is angular or V -shape and has sp^{3}-hybridisation and 104.5^{0} bond angle. Thus, its dipole mo ment is positive or more than zero.
But in BeF_{2}, structure is linear due to sp hybridization ($\mu=0$)
Thus, due to $\mu>0, \mathrm{H}_{2} \mathrm{O}$ is dipolar and due to $\mu=0, \mathrm{BeF}_{2}$ is non-polar.
17. In BF_{3} molecule, the lone pairs occupy equatorial position to minimize. [CBSE AIPMT 2004]
(a) lone pair-bond pair repulsion
(b) bond pair-bond pair repulsion
(c) lone pair-lone pair repulsion and lone pair-bond pair repulsion
(d) lone pair-lone pair repulsion.

In BrF_{3} molecule, Br is $\mathrm{sp}^{3} \mathrm{~d}$ hybridized, but its geometry is T -shaped due to distortion of geometry from trigonal bipyramidal to T -shaped by the involvement of lone pair-plone repulsion

Here $\mathrm{lp}-\mathrm{lp}$ respulsion $=0$
$\mathrm{lp}-\mathrm{bp}$ repulsion $=4$
$\mathrm{bp}-\mathrm{bp}$ repulsion $=2$
18. Which of the following would have a permanent dipole moment? [CBSE AIPMT 2005]
(a) BF_{3}
(b) SiF_{4}
(c) SF_{4}
(d) XeF_{4}
19. The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of $\mathrm{NH}_{3}(1.5 \mathrm{D})$ is larger than that of $\mathrm{NF}_{3}(0.2 \mathrm{D})$. This is because:
[CBSE Med 2006]
(a) in NH_{3} the atomic dipole and bond dipole are in the same direction whereas in NF_{3}, the same opposite directions.
(b) in NH_{3} as well as NF_{3} the atomic dipole and bond dipole are in opposite direction.
(c) in NH_{3} the atomic dipole and bond dipole are in the opposite directions whereas in NF_{3} these are in the same direction
(d) in NH_{3} as well as in NF_{3} the atomic dipole and bond dipole are in the same direction.

F is more electronegative than N , therefore direction of bond is form N to F whereas N is more electronegative than H , the direction of the bond is from H to N . Yhus whereas resultant moment of
$\mathrm{N}-\mathrm{H}$ bonds adds up to the bond moment of lone pair, that of $3 \mathrm{~N}-\mathrm{F}$ bonds partly cancel the resultant moment of lone pair. Hence, the net dipole moment of NF_{3} is less than that of NH_{3}.
20. In which of the following molecules are all the bonds not equal?
[CBSE AIPMT 2006]
(a) ClF_{3}
(b) BF_{3}
(c) AlF_{3}
(d) NF_{3}

In ClF_{3} all bonds are not equal due to its trigonal-bipyramidal ($\mathrm{sp}^{3} \mathrm{~d}$ hybridization) geometry

BF_{3} and Alf_{3} show trigonal symmetric structure due to sp^{2} hybridisation.

And

NF_{3} shows pyramidal geometry due to sp^{3} hybridisation

$3 b p+1 / p$
21. Which of the following is not a correct statement.
[CBSE AIPMT 2006]
(a) The electron deficient molecule can act as Lewis acids.
(b) The canonical structures have no real existence
(c) Every AB_{5} molecule does infact have square pyramid structure
(d) Multiple bonds are always shorter than corresponding single bond.

Generally, AB_{5} molecules have trigonal bipyramidal structure due to sp^{3} hybidisation but in some cases due to presence of lone pair of electrons, its geometry becomes distorted.
22. Which of the following is not isostructural with SiCl_{4} ?
[CBSE AIPMT 2006]
(a) SCl_{4}
(b) SO_{4}^{2-}
(C) PO_{4}^{3-}
(D) NH_{4}^{+}
SCl_{4} is not isostructural with SICl_{4} because it shows square planar structure due to involvement of repulsion between lone pair and bond pair of electrons.
SO_{4}^{2-} shows tetrahedral structure due to sp^{3} hybridisaton.
PO_{4}^{3-} shows tetrahedral structure due to sp^{3} hybridisaton.
NH_{4}^{+}shows tetrahedral structure due to sp^{3} hybridisation.
23. The number of unpaired electrons in a paramagnetic diatomic molecule of an element with atomic number 16 is
[CBSE AIMPT 2006]
(a) 2
(b) 3
(c) 4
(d) 1

Suppose the diatomic molecule is X . Then, molecular orbital electronic configuration of
${ }_{18} \mathrm{X}=\sigma 1 \mathrm{~s}^{2}, \dot{\sigma} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \dot{\sigma} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2}, \pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}, \dot{\pi} 2 \mathrm{p}_{\mathrm{x}}^{1}=\dot{\pi} 2 \mathrm{p}_{\mathrm{y}}^{1}$
Due to presence of two unpaired electrons, it shows paramagnetic character.
24. In which of the following pairs, the two species are isostructural?
[CBSE AIPMT 2007]
(a) SF_{4} and XeF_{4}
(b) SO_{3}^{2-} and NO_{3}^{-}
(c) BF_{3} and NF_{3}
(d) BrO_{3}^{-}and XeO_{3}
$\mathrm{SF}_{4}=$ irregular tetrahedral $\left(\mathrm{sp}^{3} \mathrm{~d}\right.$, one lone pair)
$\mathrm{XeF}_{4}=$ square planar $\left(\mathrm{sp}^{3} \mathrm{~d}^{2}\right.$, two lone pairs)
(a) $\mathrm{SO}_{3}^{2-}=$ pyramidal (sp^{3}, one lone pair
$\mathrm{NO}_{3}^{-}=$trigonal planar $\left(\mathrm{sp}^{2}\right)$
(b) $\mathrm{BF}_{3}=$ trigonal planar $\left(\mathrm{sp}^{2}\right)$
$\mathrm{NF}_{3}=$ pyramidal $\left(\mathrm{sp}^{3}\right)$
(c) $\mathrm{BrO}_{3}^{-}=$pyramidal (sp^{3}, one lone pair)
$\mathrm{XeO}_{3}=$ pyramidal (sp^{3}, one lone pair)
25. Which of the following species has a linear shape?
[CBSE AIPMT 2007]
(a) NO_{2}^{-}
(b) SO_{2}
(c) NO_{2}^{+}
(d) O_{3}
$\stackrel{+}{\mathrm{N}} \mathrm{O}_{2}$ has linear shape due to sp hybridization of N in $\stackrel{+}{\mathrm{N}} \mathrm{O}_{2}$
$\mathrm{O}=\stackrel{+}{\mathrm{N}}=\mathrm{O}$
Which $\mathrm{SO}_{2}, \mathrm{NO}_{2}^{-}$and O_{3} have angular shape

V-shape

V-shape

V-shape

Angular shape (due to sp^{2}
hybridisation of central atom or ion)

26 The angular shape of ozone molecule $\left(\mathrm{O}_{3}\right)$ consists of
[CBSE AIPMT 2008]
(a) 1 sigma and 2 pi-bonds
(b) 2 sigma and 2 pi-bonds
(c) 1 sigma and 1 pi-bonds
(d) 2 sigma and 1 pi-bonds

In case of single bond, there is only one σ and one π-bonds while in case of triple bond, there is one σ and two π-bonds.. Thus angular shape of ozone $\left(\mathrm{O}_{3}\right)$ contains 2σ and 1π-bonds as shown below

2 sigma and one π-bonds.
27. What is the dominant intermolecular force or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to a gas?
[CBSE PMT 2009]
(a) Dipole-diople interactions
(b) Covalent bonds
(c) London disperson force
(d) Hydrogen bonding.

In between $\mathrm{CH}_{3} \mathrm{OH}$ molecules intermolecular H -bonding exist.
Hence it is the intermolecular H -bonding that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to gas .
28. Four diatomic species are listed below. Identify the correct order in which the bond order is increasing in them:
[AIPMT 2009]
(a) $\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}$
(b) $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}$
(c) $\mathrm{NO}<\mathrm{O}_{2}^{-}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}$
(d) $\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}$
30. Which of the following molecules has trigonal planar geometry?
[CBSE AIPMT 2009]
(a) IF_{3}
(b) PCl_{3}
(c) NH_{3}
(d) BF_{3}
31. According to molecular orbital theory which of the following lists rank the nitrogen species in terms of increasing bond order?
[CBSE AIPMT 2009]
(1) $\mathrm{N}_{2}^{-}<\mathrm{N}_{2}<\mathrm{N}_{2}^{2-}$
(2) $\mathrm{N}_{2}^{2-}<\mathrm{N}_{2}^{-}<\mathrm{N}_{2}$
(3) $\mathrm{N}_{2}<\mathrm{N}_{2}^{2-}<\mathrm{N}_{2}^{-}$
(4) $\mathrm{N}_{2}^{-}<\mathrm{N}_{2}^{2-}<\mathrm{N}_{2}$
(2)

According to the molecular orbital theory (MOT).
$\mathrm{N}_{2}(7+7=14)=\sigma 1 \mathrm{~s}^{2}, \sigma 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}$

$$
\sigma 2 \mathrm{~s}^{2}, \pi 2 \mathrm{p}_{\mathrm{x}}^{2}=2 \mathrm{p}_{\mathrm{y}}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2}
$$

Bond order $=\frac{10-4}{2}=3$
$\mathrm{N}_{2}^{-}(7+7+1=15)$
$=\sigma 1 \mathrm{~s}^{2},{ }^{*} \sigma 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}$,
$\sigma 2 \mathrm{p}_{\mathrm{z}}^{2}, \pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{x}}^{1}=\pi 2 \mathrm{p}_{\mathrm{y}}^{1}$
$\mathrm{BO}=\frac{10-6}{2}=2$
Hence, the increasing order of bond order is,
$\mathrm{N}_{2}^{2-}<\mathrm{N}_{2}^{-}<\mathrm{N}_{2}$
32. Which one of the following species does not exist under normal conditions? [CBSE AIPMT. 2010]
(a) B_{2}
(b) Li_{2}
(c) Be_{2}^{+}
(d) Be_{2}
33. In which of the following pairs of molecules/ions, the central atoms have sp^{2} hybridisation?
[CBSE AIPMT 2010]
(a) NO_{2}^{-}and NH_{3}
(b) BF_{3} and NO_{2}^{-}
(c) NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
(d) BF_{3} and NH_{2}^{-}

For sp^{3} hybridisation there must be 3σ bonds or 2σ-bonds along with a lone pair of electrons.
i) $\mathrm{NO}_{2}^{-} \Rightarrow 2 \sigma+1 / \mathrm{p}=3$, i.e. sp^{2} hybridization
ii) $\mathrm{NH}_{3} \Rightarrow 3 \sigma+1 / \mathrm{p}=4$, i.e.sp ${ }^{3}$ hybridization
iii) $\mathrm{BF}_{3} \Rightarrow 3 \sigma+0 / \mathrm{p}=3$, i.e sp^{2} hybridization
iv) $\mathrm{NH}_{2}^{-} \Rightarrow 2 \sigma+2 \mathrm{lp}=4$ i.e. sp^{3} hybridization
v) $\mathrm{H}_{2} \mathrm{O} \Rightarrow 2 \sigma+2 \mathrm{lp}=4$, i.e. sp^{3} hybridization

Thus among the given pairs, only BF_{3} and NO_{2}^{-}have sp^{2} hybridisation.
34. In which one of the following species the central atom has the type of hybridization which is not the same as that present in the other three?
[CBSE AIPMT 2010]
(a) SF_{4}
(b) I_{3}^{-}
(c) SbCl_{5}^{2-}
(d) PCl_{5}

Molecules having same hybridization have same number of hybrid orbitals.
$\mathrm{H}=\frac{1}{2}[\mathrm{~V}+\mathrm{X}-\mathrm{C}+\mathrm{A}]$
Where,
$\mathrm{V}=$ number of valence electrons of central atom
$\mathrm{C}=$ number of monovalent atoms
$\mathrm{A}=$ charge on anion
$\mathrm{SbCl}_{5}^{2-}=\mathrm{sp}^{3} \mathrm{~d} 2, \mathrm{PCl}_{5}=\mathrm{sp}^{3} \mathrm{~d}$
$\mathrm{SF}_{4}=\mathrm{sp}^{3} \mathrm{~d}, \mathrm{I}_{3}^{-}=\mathrm{sp}^{3} \mathrm{~d}$
35. Which of the following has the minimum bond length?
[AIPMT 2011]
(a) O_{2}^{+}
(b) O_{2}^{-}
(c) O_{2}^{2-}
(d) O_{2}

Bond order of $\mathrm{O}_{2}^{+}=\frac{10-5}{2}=2.5$
Bond order of $\mathrm{O}_{2}^{-}=\frac{10-7}{2}=1.5$
Bond order of $\mathrm{O}_{2}^{2-}=\frac{10-8}{2}=1$
Bond order of $\mathrm{O}_{2}=\frac{10-8}{2}=2$
\because Maximum bond order =minimum bond length
\therefore Bond length is minimum for O_{2}^{+}
36. Which of the following is least likely to behave as Lewis base?
[CBSE AIPMT 2011]
(a) NH_{3}
(b) BF_{3}
(c) OH^{-}
(d) $\mathrm{H}_{2} \mathrm{O}$
BF_{3} is an electron deficient species, thus behave like a Lewis acid
\because Bond order $=\frac{\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}}{2}$
37. Considering the state of hybridization of carbon atoms, find out the molecule among the following which is linear?
[CBSE AIPMT 2011]
(a) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$

$\mathrm{H}_{3} \mathrm{C}-\stackrel{\mathrm{C}}{\mathrm{C}} \equiv \stackrel{-}{\mathrm{C}}-\stackrel{-}{\mathrm{C}}_{3}$ is linear because C_{2} and C_{3} are sp hybridized carbon atom.
38. Which of the two ions from the list given below, have the geometry that is explained by the same hybridization of orbitals, $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{SCN}^{-}$?
[CBSE AIPMT 2011]
(a) NH_{4}^{+}and NO_{3}^{-}
(b) $\mathrm{SCN}^{-} \operatorname{nad} \mathrm{NH}_{2}^{-}$
(c) NO_{2}^{-}and NH_{2}^{-}
(d) NO_{2}^{-}and NO_{3}^{-}
$\mathrm{NO}_{2}^{-} \rightarrow \mathrm{sp}^{2}$
$\mathrm{NO}_{3}^{-} \rightarrow \mathrm{sp}^{2}$
$\mathrm{NO}_{2}^{+} \rightarrow \mathrm{sp}^{3}$
$\mathrm{NH}_{4}^{-} \rightarrow \mathrm{sp}^{3}$
$\mathrm{SCN}^{+} \rightarrow \mathrm{sp}$
NO_{2}^{-}and NO_{3}^{-}both have the same hybridation i.e. sp^{2}.
39. The pair of species with the same bond order is
[NEET 2013]
(a) NO, CO
(b) $\mathrm{N}_{2}, \mathrm{O}_{2}$
(c) $\mathrm{O}_{2}^{2-}, \mathrm{B}_{2}$
(d) $\mathrm{O}_{2}^{+}, \mathrm{NO}^{+}$.
40. Which of the following is paramagnetic?
[NEET 2013]
(a) NO^{+}
(b) CO
(c) O_{2}^{-}
(d) CN^{-}
41. Which of the following is a polar molecule?
[NEET 2013]
(a) BF_{3}
(b) SF_{4}
(c) SiF_{4}
(d) XeF_{4}

Symmetrical molecules are generally non-polar although they have polar bonds. This is because bond dipole of one bond is cancelled by that of the other. $\mathrm{BF}_{3}, \mathrm{SIF}_{4}$ and XeF_{4} being symmetrical as non-polar, SF_{4} is unsymmetrical because of the presence of a lone pair of electrons. Due to which it is a polar molecule.
42. Which of the following species contains three bond pairs and one lone pair around the central atom?
[NEET 2013]
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) BF_{3}
(c) NH_{2}^{-}
(d) PCl_{3}

(a) $\mathrm{H}_{2} \mathrm{O} \Rightarrow(2 \mathrm{bp}+2 \mathrm{lp})$
[$\mathrm{bp}=$ bond pair and $\mathrm{lp}=$ lone pair]

(b) $\mathrm{BF}_{3} \Rightarrow(3 \mathrm{bp}+0 \mathrm{lp})$

(c) $\mathrm{NH}_{2}^{-} \Rightarrow(2 \mathrm{bp}+2 \mathrm{p})$

(d) $\mathrm{PCl}_{3} \Rightarrow(3 \mathrm{bp}+1 \mathrm{lp})$

Thus, in PCl_{3}, the central P -atom is surrounded by three bond pairs and one lone pair.
43. Bond order of 1.5 is shown by
[NEET 2013]
(a) O_{2}^{+}
(b) O_{2}^{-}
(c) O_{2}^{2-}
O_{2}
44. Which one of the following molecules contain no π-bond?
[NEET 2013]
(a) CO_{2}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) SO_{2}
(d) NO_{2}

All the molecules have O -atom with lone pairs, but in $\mathrm{H}_{2} \mathrm{O}$ the H -atom has no vacant orbital for π bonding. That's why it does not have any π-bond.
In all other given molecules, the central atom because of the presence of vacant orbitals is capable to form π-bonds.
45. Which of the following molecules has the maximum dipole moment?
[CBSE AIPMT 2014]
(a) CO_{2}
(b) CH_{4}
(c) NH_{3}
(d) NF_{3}
46. Which of the following species has plane triangular shape.
[CBSE AIPMT 2014]
(a) N_{3}
(b) NO_{3}^{-}
(c) NO_{2}^{-}
(d) CO_{2}

Species with sp^{2} hybridisation are planar triangular in shape. Among the given species NO_{3}^{-}is sp^{2} hybridised with no lone pair of electrons on central atom, N . Whereas $\mathrm{N}_{3}, \mathrm{NO}_{2}^{-}$and CO_{2} are sp hybridized with a linear shape.

$: \mathrm{O}=\mathrm{C}=\mathrm{O}:$
47. Which of the following species contains equal number of σ and π-bonds? [CBSE AIPMT 2015]
(a) HCO_{3}^{-}
(b) XeO_{4}
(c) $(\mathrm{CN})_{2}$
(d) $\mathrm{CH}_{2}(\mathrm{CN})_{2}$

	Structure	σ and π bonds
(a)		$\begin{aligned} & \sigma \text { bonds }-4 \\ & \pi \text { bonds }-1 \end{aligned}$
(b)		σ bonds - 4 π bonds -4
(c)	$\mathrm{N} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$	σ bonds - 3 π bonds -4
(d)		$\begin{aligned} & \hline \sigma \text { bonds }-6 \\ & \pi \text { bonds }-4 \end{aligned}$

48. Which of the following pairs of ions are isoelectronic and isostructural? [CBSE AIMPT 2015]
(a) $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
(b) $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
(c) $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(D) $\mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
$\mathrm{ClO}_{3}^{-}=\mathrm{SO}_{3}^{2-}$

Number of electrons
$\mathrm{CO}_{3}^{2-}=6+2+24=32$
$\mathrm{SO}_{3}^{2-}=16+2+24=42$
$\mathrm{ClO}_{3}^{-}=4+24+1=42$
$\mathrm{CO}_{3}^{2-}=6+24+2=32$
$\mathrm{NO}_{3}^{-}=7+2+24=33$
Hence ClO_{3}^{-}and SO_{3}^{2-} are isoelectronic and are pyramidal in shape.
49. Which of the options represent the correct bonder order?
[AIPMT 2015]
(a) $O_{2}^{-}<O_{2}<O_{2}^{+}$
(b) $O_{2}^{-}>O_{2}<O_{2}^{+}$
(c) $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
(d) $O_{2}^{-}>O_{2}>O_{2}^{+}$
50. Predict the correct order among the following:
[NEET 2016]
(a) lone pair - lone pair > bond pair - bond pair > lone pair - bond pair
(b) bond pair - bond pair > lone pair - bond pair > lone pair - lone pair
(c) lone pair - bond pair > bond pair - bond pair > lone pair - lone pair
(d) lone pair - lone pair > lone pair - bond pair > bond pair - bond pair

According to the postulate of VSEPR theory, a lone pair occupies more space than a bonding pair, since it lies closer to the central atom. This means that the repulsion between the different electron pairs follow the order.
Ip > lp >lp >bp >bp -bp
51. Consider the molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. Which of the given statements is false?
[NEET 2016]
(a) The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is larger than the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}.
(b) The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is smaller than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}.
(c) The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4} is larger than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}.
(d) The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}, the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}, and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ are all greater than 90°.
As the number of lone pair of electrons on central element increases, repulsion between those lone pair of electrons increases and therefore, bond angle decreases.
Molecules Bond angle
CH_{4} (no lone pair of electrons) 109.5^{0}
NH_{3} (one lone pair of electrons) 107.5^{0}
$\mathrm{H}_{2} \mathrm{O}$ (two lone pair of electrons) 104.45^{0}
52.
53. The hybridizations of atomic orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}respectively are
[NEET 2016]
(a) $\mathrm{sp}, \mathrm{sp}^{3}$ and sp^{2}
(b) $\mathrm{sp}^{2}, \mathrm{sp}^{3}$ and sp
(c) $\mathrm{sp}, \mathrm{sp}^{2}$ and sp^{3}
(d) $\mathrm{sp}^{2}, \mathrm{sp}$ and sp^{3}

Ion	Structure	Hybridisation
NO_{2}^{+}	$\mathrm{O}=\mathrm{N}^{+}=\mathrm{O}$	Sp
NO_{3}^{-}	$\mathrm{O}_{-} \mathrm{N} \rightarrow \mathrm{O}$	Sp^{2}
NH_{4}^{-}	O^{-}	

Thus, option (C) is correct.
54. Which of the following pairs of ions is isoelectronic and isostructural?
[NEET 2016]
(a) $\mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(b) $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
(c) $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(d) $\mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
55. Which one of the following pairs of species have the same bond order?
[NEET 2017]
(a) CO, NO
(b) $\mathrm{O}_{2}, \mathrm{NO}^{+}$
(c) $\mathrm{CN}^{-}, \mathrm{CO}$
(d) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}$

The species that have same number of electrons have same bond order.

Species	Number of electrons
CO	$6+8=14$
NO	$7+8=15$
O_{2}	$8+8=16$
NO^{+}	$7+8-1=14$
CN^{-}	$6+7+1=14$
O_{2}^{-}	$8+8+1=17$

Thus, both CN^{-}and CO have equal number of electrons. So, their bond order will be same.
56. Consider the following species:
[NEET 2018]
$\mathrm{CN}^{+}, \mathrm{CN}^{-}$, NO and CN
Which one of these will have the highest bond order?
(a) CN^{+}
(b) CN
(c) CN^{-}
(d) NO
57. Which of the following diatomic molecular species has only π-bonds according to molecular orbital theory?
[NEET (National) 2019]
(a) N_{2}
(b) C_{2}
(c) Be_{2}
(d) O_{2}

The molecular orbital configuration of C_{2} is
$C_{2}(Z=12)=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}$,
$\pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}$.
Double bond in C_{2} consists of both
π-bonds because of the presence of last
(valence) four electrons in two
π-molecular orbitals.
The configuration of $\mathrm{N}_{2}, \mathrm{Be}_{2}$ and O_{2} are as follows:
$\mathrm{N}_{2}(Z=14)-\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}$,
$\pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}$ (1σ and 2π-bonds)
$\mathrm{Be}_{2}(Z=8)-\sigma 1 s^{2}, \sigma^{+} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}(\sigma$
bonds only)
$\mathrm{O}_{2}(Z=16)-\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}$,
$\sigma \cdot 2 p_{z}^{2}, \pi 2 p_{x}^{2}=\pi 2 p_{y^{2}}^{2}, \pi^{*} 2 p_{x}^{1}=\pi^{*} 2 p_{z}^{1}(\sigma, \pi$ and $1 \pi^{*}$ bond)
58. Which of the following is paramagnetic ?
[NEET (Odisha) 2019]
(a) N_{2}
(b) H_{2}
(c) Li_{2}
(d) O_{2}

Key Idea If all the electron in a molecule are paired, the molecule is diamagnetic and if there are unpaired electrons in a molecule, it is paramagnetic.
Molecular orbital configuration of given molecules are as follows:
(a) $N_{2}(Z=14)-\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}$, $\sigma^{*} 2 s^{2}, \pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}, \sigma 2 p_{z}^{2}$ It is a diamagnetic molecule due to absence of unpaired electron.
(b) $\mathrm{H}_{2}(Z=2)-1 \sigma^{2}$ It is a diamagnetic molecule.
(c) $L i_{2}(Z=6)-\sigma 1 s^{2}, \sigma * 1 s^{2}, \sigma 2 s^{2}$ It is a diamagnetic molecule.
(d) $O_{2}(Z=16)-\sigma 1 s^{2}, \sigma * 1 s^{2}, \sigma 2 s^{2}, \sigma * 2 s^{2}$, $\sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}=\pi 2 p_{y}^{2}, \pi * 2 p_{x}^{1}=\pi^{*} 2 p_{y}^{1}$ It is a paramagnetic molecule due to presence of unpaired electrons in each orbital of degenerate levels. Thus, option (d) is correct.
59. Match the xenon compounds in Column I with its structure in Column II and assign the correct code :
[NEET (National) 2019]

	Column I		Column II
A.	XeF_{4}	(i)	Pyramidal
B.	XeF_{6}	(ii)	Square planar
C.	XeOF_{4}	(iii)	Distorted octahedral
D.	XeO_{3}	(iv)	Square pyramidal

Codes

	A	B	C	D
(a)	(ii)	(iii)	(iv)	(i)
(b)	(iii)	(iii)	(i)	(iv)
(c)	(iii)	(iv)	(i)	(ii)
(d)	(i)	(ii)	(iii)	(iv)

60. Which of the following is the correct order of dipole moment?
[NEET (Odisha) 2019]
(a) $\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{BF}_{3}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
BF_{3} has zero dipole moment as it is symmetrical in nature. $\mathrm{H}_{2} \mathrm{O}$ has maximum dipole moment as it possess two line pair electrons. Between $\mathrm{NH}_{3} \mathrm{NF}_{3}, \mathrm{NH}_{3}$ and NF_{3}, both N possesses one lone pair of electrons.
This is because in case of NF_{3} the net $\mathrm{N}-\mathrm{H}$ bond dipole is in the same direction as the direction of dipole of lone pair. But in case of NF_{3}, the direction of net dipole moment of three $-\mathrm{N}-\mathrm{F}$ bonds is opposite to that of the dipole moment of the lone pair. Thus, the correct of dipole moment is

61. Which of the following set of molecules will have zero dipole moment?
[NEET (Sept) 2020]
(a) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
(b) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene
(c) Boron trifluoride, beryllium difluoride, carbon dioxide, 1, 4-dichlorobenzene
(d) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene
62.
63. Identify the wrongly matched pair. [NEET (Oct.) 2020]

Molecule
Shape of geometry of molecule
(a) PCl_{5} Trigonal planar
(b) SF_{6}

Octahedral
(c) BeCl_{2}

Linear
(d) NH_{3}

Trigonal pyramidal
64. Identify a molecule which does not exist.
[NEET (Sep.) 2020]
(a) Li_{2}
(b) C_{2}
(c) O_{2}
(d) He_{2}
65. The potential energy (y) curve for H , formation as a function of internuclear distance (x) of the H atoms is shown below.
[NEET (Oct) 2020]

The bond energy of H_{2} is
[NEET (Oct.) 2020]
(a) $(b-a)$
(b) $\frac{(\mathrm{c}-\mathrm{a})}{2}$
(c) $\frac{(\mathrm{b}-\mathrm{a})}{2}$
(d) $(\mathrm{c}-\mathrm{a})$

From the information mentioned in the above curve, bond energy (BE) of H_{2} molecule is $(\mathrm{b}-\mathrm{a})$ or $\mid \mathrm{b}$ - a |
66. The correct sequence of bond enthalpy of ' $\mathrm{C}-\mathrm{X}$ bond is
[NEET 2021]
(a) $\mathrm{CH}_{3}-\mathrm{F}<\mathrm{CH}_{3}-\mathrm{Cl}<\mathrm{CH}_{3}-\mathrm{Br}<\mathrm{CH}_{3}-\mathrm{I}$
(b) $\mathrm{CH}_{3}-\mathrm{F}>\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-\mathrm{I}$
(c) $\mathrm{CH}_{3}-\mathrm{F}<\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-\mathrm{I}$
(d) $\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{F}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-\mathrm{I}$

On moving down the group from F to I , the size of atom increases. Order of the size of halogen atoms is $1>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$. So, the bond length of $\mathrm{C}-\mathrm{X}$ bond also increases from F to I and hence, the bond enthalpy decreases from F to I . Correct order of bond length of $\mathrm{C}-\mathrm{X}$ bond is
$\mathrm{H}_{3} \mathrm{C}-\mathrm{H}_{3} \mathrm{C}-\mathrm{Br}>\mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}>\mathrm{H}_{3} \mathrm{C}-\mathrm{F}$
Correct order of bond enthalpy is
$\mathrm{H}_{3} \mathrm{C}-\mathrm{F}>\mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{H}_{3} \mathrm{C}-\mathrm{I}$
67. Which of the following molecules is non-polar in nature?
[NEET 2021]
(a) POCl_{3}
(b) $\mathrm{CH}_{2} \mathrm{O}$
(c) SbCl_{5}
(d) NO_{2}
(a) PCl_{3} Hybridisation $=\frac{1}{2} \times 8=4\left(\mathrm{sp}^{3}\right)$

Shape $=$ Tetrahedral
Dipole moment, $\mu \neq 0$
POCl_{3} is polar in nature.
(b)
68. Match List-1 with List-11.

	List - I		List - II
A.	PCl_{5}	I.	Square pyramidal
B.	SF_{6}	II.	Trigonal planar
C.	BrF_{5}	III.	Octahedral
D.	BF_{3}	IV.	Trigonal bipyramidal

Choose the correct answer from the options given below
[NEET 2021]

	A	B	C	D
(a)	IV	III	I	II
(b)	II	III	IV	I
(c)	III	I	IV	II
(d)	IV	III	II	I

69. BF_{3} is planar and electron deficient compound. Hybridisation and number of electrons around the central atom, respectively are
[NEET 2021]
(a) sp^{3} and 4
(b) sp^{3} and 6
(c) sp^{2} and 6
(d) sp^{2} and 8

Hybridisation of a central atom can be calculate by using the formula
Hybridisation $=\frac{1}{2}$ [Number of valence electrons + Number of side atoms - Positive charge +
Negative charge]
Electronic configuration of $\mathrm{B}=1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{1}$
Number of valence electrons in $\mathrm{B}=3$ electron in last shell, $\mathrm{n}=2$
Number of side atoms in $\mathrm{BF}_{3}=3 \mathrm{~F}-$ atoms

So, hybridization $=\frac{1}{2}(3+3)=\frac{1}{2} \times 6=3$
Hybridisation of B in BF_{3} is sp^{2}
Number of electrons around central atom, B in BF_{3} is equal to the number of electrons in three sigma bonds $(\mathrm{B}-\mathrm{F})$ i.e. $=3 \mathrm{~B}-\mathrm{F}$ bonds $\times 2$ electrons in one σ-bond
70. Which amongst the following is INCORRECT statement?
[NEET 2022]
(1) The bond orders of $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}$and O_{2}^{2-} are 2.5, 2, 1.5 and 1, respectively
(2) C_{2} molecule has four electrons in its two degenerate π molecular orbitals
(3) H_{2}^{+}ion has one electron
(4) O_{2}^{+}ion is diamagnetic
O_{2}^{+}has one unpaired electron.
71. Amongst the following which one will have maximum 'lone pair-lone pair' electron repulsions?
(1) IF_{5}
(2) SF_{4}
(3) XeF_{2}
(3)
No. of

lone pair	molecule
1	IF_{5}
2	SF_{4}
3	XeF_{2}
2	ClF_{3}

[NEET 2022]
72. Identify the incorrect statement from the following.
[NEET 2022]
(1) All the five 4 d orbitals have shapes similar to the respective 3 d orbitals.
(2) In an atom, all the five 3d orbitals are equal in energy in free state.
(3) The shapes of $d_{x y}, d_{y z}$, and $d_{z x}$ orbitals are similar to each other; and $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$ are similar to each other.
(4) All the five 5 d orbitals are different in size when compared to the respective 4 d orbitals.

The shapes of $d x y, d y z, d z x$ and $d x^{2} y^{2}$ are similar to each other.
73. Given below are two statements:
[NEET 2022]

Statement I:

The boiling points of the following hydrides of group 16 elements increases in the order$\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$.

Statement II:

The boiling points of these hydrides increase with increase in molar mass.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both Statement I and Statement II are incorrect
(2) Statements I is correct but Statement II is incorrect
(3) Statement I is incorrect but statement II is correct
(4) Both Statement I and Statement II are correct

$\mathrm{H}_{2} \mathrm{O}\left(100^{\circ} \mathrm{C}\right)$	$\mathrm{H}_{2} \mathrm{~S}\left(-60^{\circ} \mathrm{C}\right)$
$\mathrm{H}_{2} \mathrm{Se}\left(-41.25^{\circ} \mathrm{C}\right)$	$\mathrm{H}_{2} \mathrm{Te}\left(-2.2^{\circ} \mathrm{C}\right)$

74. Given below are two statements: one is labeled as Assertion (A) and the other is labeled as Reason (R).
[NEET 2022]
Assertion (A): ICl is more reactive than I_{2}.
Reason (R): $\mathrm{I}-\mathrm{Cl}$ bond is weaker than $\mathrm{I}-\mathrm{I}$ bond.
In the light of the above statements choose the most appropriate answer from the options given below:
(1) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
(2) (A) is correct but (R) is not correct.
(3) (A) is not correct but (R) is correct.
(4) Both (A) and (R) are correct and (R) is the correct explanation of (A)

ICl is more reactive than I_{2} due to ionic character of the bond.
76. Which of the following statements is not correct about diborane?
[NEET 2022]
(1) The four terminal B-H bonds are two centre two electron bonds.
(2) The four terminal Hydrogen atoms and the two Boron atoms lie in one plane.
(3) Both the Boron atoms are sp^{2} hybridized.
(4) There are two 3-centre-2-electron bonds.

In diborane both the boron atoms are sp^{3} hybridised

