GRCULAR MOTION

EXERCISE - 1

1. d
$\omega=$ rate of change of angle
$\therefore \quad \frac{\omega_{1}}{\omega_{2}}=1$ as they both complete 2π angle in same time.
2. \mathbf{c}

$$
\mathrm{mg}-\mathrm{N}=\frac{\mathrm{mv}}{\mathrm{r}}
$$

$\Rightarrow \quad \mathrm{N}=\mathrm{mg}-\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
Since $\mathrm{r}_{\mathrm{A}}<\mathrm{r}_{\mathrm{B}}$
$\Rightarrow \quad N_{A}<N_{B}$
3. \mathbf{a}

Force is always perpendicular to displacement
$\therefore \quad$ work done $=0$
4. b

$$
\begin{aligned}
& a_{\text {result tant }}=\sqrt{a_{c}^{2}+a_{\text {tang. }}^{2}} \\
& =\sqrt{\left(\frac{30^{2}}{500}\right)^{2}+2^{2}}=\frac{\sqrt{181}}{5}=2.7 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

5. a

$$
\begin{array}{ll}
\mathrm{f}=\mathrm{mg} \\
\Rightarrow & \mu \mathrm{~N} \geq \mathrm{mg} \\
\Rightarrow & \mu \mathrm{mr} \omega^{2} \geq \mathrm{mg} \\
\Rightarrow & \omega \geq \sqrt{\frac{\mathrm{g}}{\mu \mathrm{r}}}
\end{array}
$$

6. c

If the coin just slips at a distance of 4 r from centre

$$
\begin{equation*}
\Rightarrow \quad \mu \mathrm{mg}=\mathrm{m} 4 \mathrm{r} \omega^{2} \tag{1}
\end{equation*}
$$

If angular velocity is doubled
$\mu \mathrm{mg}=\mathrm{mR}(2 \omega)^{2}$
From (1) and (2)

$$
\begin{equation*}
\Rightarrow \quad R=r \tag{2}
\end{equation*}
$$

7. d

$$
\begin{equation*}
\mathrm{T}=\mathrm{mr} \omega_{0}^{2} \tag{1}
\end{equation*}
$$

$2 \mathrm{~T}=\mathrm{mr} \omega^{2}$
$\Rightarrow \quad \omega=\sqrt{2} \omega_{0}=\sqrt{2} \times 5 \mathrm{rpm}$
8. \mathbf{c}

Since force is always perpendicular to velocity particle moves in circle. It's speed is constant and velocity variable.
9. c
$\mu \mathrm{mg}=\frac{\mathrm{mv}_{\text {max }}^{2}}{\mathrm{r}}$
$\mathrm{v}_{\text {max }}=\sqrt{\mu \mathrm{gr}}=\sqrt{0.3 \times 10 \times 300}$
$=30 \mathrm{~m} / \mathrm{s}=108 \mathrm{~km} / \mathrm{hr}$
10. c

$$
\mathrm{F}_{\mathrm{net}}=\mathrm{ma}_{\mathrm{rad} .}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}
$$

11. b
$\mathrm{T}=\mathrm{mr} \omega^{2}=0.2 \times 0.5 \times 4^{2}=1.6 \mathrm{~N}$
12. \mathbf{c}

Centripetal force is provided by friction
13. a

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{A}}-\mathrm{mg}=\frac{\mathrm{mv}}{} \mathrm{r}^{2} \\
& \mathrm{~N}_{\mathrm{A}}=\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{r}_{\mathrm{A}}}, \quad \mathrm{~N}_{\mathrm{B}}=\mathrm{mg}-\frac{\mathrm{mv}^{2}}{\mathrm{r}_{\mathrm{B}}} \\
& \mathrm{~N}_{\mathrm{C}}=\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{r}_{\mathrm{c}}}
\end{aligned}
$$

14. a

Real forces are mg and T only
15. a

Bead starts slipping, when
$\mu \mathrm{N}=\mathrm{mL} \omega^{2}$
$\mu \mathrm{mL} \alpha=\mathrm{mL} \omega^{2}$
$\mu \alpha=(0+\alpha t)^{2}$
$\Rightarrow \quad t=\sqrt{\frac{\mu}{\alpha}}$

EXERCISE - 2

1. (a, c)

Time to fall $=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=\sqrt{\frac{2 \times 5}{10}}=1 \mathrm{~s}$
Distance covered in y direction $=\mathrm{v} \times \mathrm{t}$
$=3 \times 1$
$=3 \mathrm{~m}$
Since there is no velocity along x -direction x is always 2 m .
2. (a,b)

For no wear and tear friction is zero
$\begin{array}{ll}\Rightarrow & \frac{v^{2}}{R g}=\tan 15^{\circ} \\ \Rightarrow & v=\sqrt{R g \tan 15^{\circ}}=28.1 \mathrm{~m} / \mathrm{s}\end{array}$
$\mathrm{v}_{\text {max }}=\sqrt{\frac{\operatorname{Rg}(\mu+\tan \theta)}{1-\mu \tan \theta}}=38.1 \mathrm{~m} / \mathrm{s}$
3. (b, c)
$\overrightarrow{\mathrm{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} ; \therefore \overrightarrow{\mathrm{v}} \| \mathrm{d} \overrightarrow{\mathrm{r}}$ (i.e. along the tangent)
$\overrightarrow{\mathrm{a}}_{\text {avg }}=\frac{\Delta \overrightarrow{\mathrm{v}}}{\mathrm{t}}=0$
4. (a, b)
$\frac{\mathrm{dS}}{\mathrm{dt}}=\mathrm{v}=\mathrm{K} \sqrt{\mathrm{S}}$
$\Rightarrow \quad \int_{0}^{\mathrm{S}} \frac{\mathrm{dS}}{\sqrt{\mathrm{S}}}=\int_{0}^{\mathrm{t}} \mathrm{Kdt}$
$2 \sqrt{\mathrm{~S}}=\mathrm{Kt}$
$\mathrm{S}=\frac{\mathrm{K}^{2} \mathrm{t}^{2}}{4}$
$\mathrm{v}=\frac{\mathrm{dS}}{\mathrm{dt}}=\frac{\mathrm{K}^{2} \mathrm{t}}{2}$
5. (a, b, c)
$\mathrm{T}=\mathrm{m} \ell \omega^{2}, \mathrm{v}=\ell \omega, \mathrm{F}_{\text {vert }}=0$
6. (a, b, d)
$\omega=\frac{\mathrm{v}}{\mathrm{R}}=$ constant, $\theta=\omega \mathrm{t}$
$\mathrm{F}_{\mathrm{y}}=-\mathrm{F} \sin \theta=-\mathrm{F} \sin \omega \mathrm{t}$
$=-\frac{m v^{2}}{\mathrm{R}} \sin \omega \mathrm{t}$
$\mathrm{V}_{\mathrm{r}}=-\mathrm{v} \sin \theta=-\mathrm{v} \sin \omega \mathrm{t}$
x -coordinate $=\mathrm{R} \cos \omega t$
7. (b, d)

If $\mu=0.1, \mathrm{f}_{\text {max }}=0.1 \times 0.5 \times 10=0.5 \mathrm{~N}$
Req. centripetal force $=m r \omega^{2}=0.5 \times 1 \times 0.5^{2}=.125 \mathrm{~N}$
$\therefore \quad \mathrm{f}=\frac{1}{8} \mathrm{~N}$, Tension $=$ zero
If $\mu=\frac{1}{20}, \mathrm{f}_{\text {max }}=\frac{1}{20} \times 0.5 \times 10=0.25 \mathrm{~N}$
$\therefore \quad \mathrm{f}=\frac{1}{8} \mathrm{~N}$, Tension $=$ zero
If $\mu=\frac{1}{40}, \mathrm{f}_{\text {max }}=\frac{1}{40} \times 0.5 \times 10=0.125 \mathrm{~N}$
$\therefore \quad \mathrm{f}=\frac{1}{8} \mathrm{~N}$, Tension $=0$

EXERCISE - 3

1. (a)
$\frac{v^{2}}{r}=K^{2} r^{2}$ (given)
(a) Centripetal force $=\mathrm{mK}^{2} \mathrm{rt}^{2}$
(b) Tangential force $=\mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{mKr}$
(c) Power of centripetal force $=\overrightarrow{\mathrm{F}}_{\text {centripetal }} \cdot \overrightarrow{\mathrm{v}}=0$
(d) Power of tangential force $=\vec{F}_{t} \cdot \vec{v}=F_{t} v$

$$
=m \cdot K^{2} r^{2} t
$$

2. (b)

Assuming no friction between m_{1} and m_{2}
$\mathrm{a}_{1}=\mathrm{R} \omega^{2}-\frac{\mathrm{T}}{\mathrm{m}_{1}}$
$\mathrm{a}_{2}=\mathrm{R} \omega^{2}-\frac{\mathrm{T}}{\mathrm{m}_{2}}$
$\because \quad a_{1}>a_{2}$
$\therefore \quad$ Friction on upper block acts towards left and on lower block towards right.
3. (a)

Let the required angular velocity be ω
Then

$$
\begin{align*}
& \mathrm{T}+\mu \mathrm{m}_{1} \mathrm{~g}=\mathrm{m}_{1} \mathrm{R} \omega^{2} \quad \ldots \text { (1) } \tag{1}\\
& \mathrm{T}=\mu \mathrm{m}_{1} \mathrm{~g}+\mathrm{m}_{2} \mathrm{R} \omega^{2} \quad \ldots(2) \tag{2}\\
& \Rightarrow \quad 2 \mu \mathrm{~m}_{1} \mathrm{~g}=\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{R} \omega^{2} \\
& \Rightarrow \quad \omega=\sqrt{\frac{2 \mu \mathrm{~m}_{1} \mathrm{~g}}{\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right) \mathrm{R}}}=6.3 \mathrm{rad} / \mathrm{s}
\end{align*}
$$

4. (b)
$\mathrm{T}=\mu \mathrm{m}_{1} \mathrm{~g}+\mathrm{m}_{2} \mathrm{R} \omega^{2}$
$=0.5 \times 2 \times 10+1 \times 0.5 \times 40=30 \mathrm{~N}$
5. (b)

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{v}_{\text {design }}^{2}}{\mathrm{gR}}=\frac{1}{2} \\
& \mathrm{f}=\mathrm{m}\left(\mathrm{~g} \sin \theta-\frac{\mathrm{v}^{2}}{\mathrm{R}} \cos \theta\right) \\
& =300 \sqrt{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6. (a)

$$
\begin{aligned}
f & =m\left(\frac{v^{2}}{R} \cos \theta-g \sin \theta\right) \\
& =500 \sqrt{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

7. (a)

$$
\theta=\tan ^{-1} \frac{1}{2}
$$

8. (c)

$$
\begin{align*}
& \mathrm{mg} \sin \theta=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{~L}} \tag{1}\\
& \frac{1}{2} \mathrm{~m}(\sqrt{3 \mathrm{gL}})^{2}=\frac{1}{2} \mathrm{mv}^{2}+\mathrm{mgL}(1+\sin \theta) \tag{2}\\
& \therefore \quad \theta=\sin ^{-1}\left(\frac{1}{3}\right) ; \text { Also } v^{2}=\frac{1}{3} \mathrm{gL}
\end{align*}
$$

9. (c)

$$
\begin{aligned}
& \mathrm{h}_{\max }=\mathrm{L}(1+\sin \theta)+\frac{0^{2}-\mathrm{v}^{2} \cos ^{2} \theta}{-2 \mathrm{~g}} \\
& =\frac{40 \mathrm{~L}}{27}
\end{aligned}
$$

10. (b)

$$
\begin{aligned}
& \frac{1}{2} \mathrm{~m}(\sqrt{3 \mathrm{gL}})^{2}=\mathrm{mg} \mathrm{~h}_{\max } \\
& \Rightarrow \quad \mathrm{h}_{\max }=\frac{3 \mathrm{~L}}{2}
\end{aligned}
$$

EXERCISE - 4

1. Here frictional force will provide the required tangential and centripetal force for the circular motion of car.
Force of friction will act along the direction of net acceleration.
$f=m \sqrt{a^{2}+\left(\frac{v^{2}}{R}\right)^{2}}$
Car will skid when $m \sqrt{a^{2}+\left(\frac{v^{2}}{R}\right)^{2}}$
$=m \sqrt{a^{2}+\frac{a^{4}+t^{4}}{R^{2}}}$
$\Rightarrow \quad t=\left[\frac{\left(\mu^{2} g^{2}-a^{2}\right) R^{2}}{a^{4}}\right]^{1 / 4}$

\section*{| IIT-ian's PACE Edu.Pvt.Ltd. | Circular Motion \& WPE | Rg-C \& WPE-11 |
| :--- | :--- | :--- |}

Till this time distance traveled by car is $D=\frac{1}{2} a t^{2}$. Putting value of t we get $D=\frac{R \sqrt{\mu^{2} g^{2}-a^{2}}}{2 a}$.
2. The insect will slide when $\mathrm{mg} \sin \alpha$ becomes equal to
limiting friction. At every instant the insect is in equilibrium.
So, $\mathrm{N}=\mathrm{mg} \cos \alpha$
$\mu \mathrm{N}=\mathrm{mg} \sin \alpha$
$\Rightarrow \mu \mathrm{mg} \cos \alpha=\mathrm{mg} \sin \alpha \Rightarrow \mu=\tan \alpha \Rightarrow \alpha=\tan ^{-1} \mu=$
 $\tan ^{-1}(1 / 3)$
3. Applying Newton's law towards the centre of circle we get $\mathrm{N}=\mathrm{m} \omega^{2} \mathrm{R}$
Let ω be the minimum angular speed for which man is not falling. At this instant its weight will be balanced by limiting friction acting upwards.
i.e, $\mu \mathrm{N}=\mathrm{mg} \Rightarrow 0.15 \times 70 \omega^{2} \times 3=70 \times 10$
$\Rightarrow \omega=4.7 \mathrm{rad} / \mathrm{sec}$.

4. Applying Newton's law along vertical we get

$$
\begin{align*}
& \mathrm{T} \frac{\cos \pi}{6}+\mathrm{T} \frac{\cos \pi}{3}=\mathrm{mg} \tag{1}\\
& \Rightarrow \quad \mathrm{~T}=\frac{2 \mathrm{mg}}{\sqrt{3}+1}
\end{align*}
$$

Applying Newton's law along horizontal.

$$
\begin{aligned}
& \text { We get } \mathrm{T} \cos \frac{\pi}{3}+\mathrm{T} \cos \frac{\pi}{6}=\mathrm{m} \omega^{2} \mathrm{R}=\mathrm{m} \omega^{2} \frac{\ell \sqrt{3}}{2} \\
& \Rightarrow \quad \omega^{2}=\frac{2 \mathrm{~g}}{\ell \sqrt{3}}
\end{aligned}
$$

5. Particle P and Q will be at same angular position whenever $5 \pi t=2 \pi t+\frac{\pi}{2}+2 \pi n$.

$$
\begin{equation*}
\Rightarrow \quad \mathrm{t}=\frac{1}{6}+\frac{2 \mathrm{n}}{3}(\mathrm{n}=\text { integer }) \tag{1}
\end{equation*}
$$

Similarly, particle P and R will be at same angular position.
Whenever $5 \pi \mathrm{t}=3 \pi \mathrm{t}=\pi+2 \pi \mathrm{~m}$ ($\mathrm{m}=$ integer)
$\Rightarrow \quad \mathrm{t}=\frac{1}{2}+\mathrm{m}$

\section*{| IIT-ian's PACE Edu.Pvt.Ltd. | Circular Motion \& WPE | Rg-C \& WPE-11 |
| :--- | :--- | :--- |}

All three particles will be at same angular position when (1) = (2)

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2}+m=\frac{1}{6}+\frac{2 n}{3} \\
& \Rightarrow \quad 2 n=1+3 m
\end{aligned}
$$

Smallest integral value of $\mathrm{m} \& \mathrm{n}$ satisfying the above equation is $\mathrm{m}=1, \mathrm{n}=2$.
Putting these values in (1) \& (2) we get $\mathrm{t}=1.5 \mathrm{sec}$.
So, they will meet for the first time at $\mathrm{t}=1.5 \mathrm{sec}$.
6. According to question, $a_{c}=a_{t}=\frac{v^{2}}{R}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d v}{d t}=\frac{v^{2}}{R} \Rightarrow \int_{v_{0}}^{v} \frac{d v}{v^{2}}=\int_{0}^{t} \frac{d t}{R} \\
& \Rightarrow \quad \frac{-1}{v}+\frac{1}{v_{0}}=\frac{t}{R} \Rightarrow V(t)=\frac{R v_{0}}{R-t v_{0}} \\
& \Rightarrow \quad \int_{0}^{2 \pi R} d x=R v_{0} \int_{0}^{T} \frac{d t}{R-t v_{0}} \Rightarrow 2 \pi R=\frac{-R v_{0}}{v_{0}}\left(\ell n\left(R-v_{0}\right)_{0}^{T}\right. \\
& \Rightarrow \quad T=\frac{R}{v_{0}}\left(1-e^{-2 \pi}\right)
\end{aligned}
$$

7. Lets assume that the particles meet at time t. Distance traveled by $\mathrm{A}=$ distance traveled $+\pi \mathrm{R}$ by B

$$
\begin{aligned}
& \Rightarrow \quad v t+\frac{1}{2} \times \frac{72 v^{2} t^{2}}{25 \pi R}=v t+\pi R \\
& \Rightarrow \quad t=\frac{5 \pi R}{6 v}
\end{aligned}
$$

Angle traced by $\mathrm{A}=\frac{\text { distan ce travelled }}{\mathrm{R}}=\frac{11 \pi}{6}$
Angular velocity $=\frac{v+a t}{R}=\frac{17 v}{5 R}$

EXERCISE - 5

1. (c, d)
$\overrightarrow{\mathrm{F}} \perp \overrightarrow{\mathrm{v}} \Rightarrow \mathrm{P}=0 \Rightarrow$ kinetic energy $=$ constant; F is constant (given) $\Rightarrow \frac{\mathrm{mv}^{2}}{\mathrm{R}}=$ constant
$\Rightarrow \mathrm{R}=$ constant .
2.

(a)

Radius of curvature in (a) is minimum
3. (a)
$\mathrm{mg} \sin \alpha=\frac{1}{3} \mathrm{mg} \cos \alpha \Rightarrow \cot \alpha=3$
4. (c)
$\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}}_{\text {tangential }}+\overrightarrow{\mathrm{a}}_{\text {normal }}$ and $\overrightarrow{\mathrm{a}}_{\text {tangential }}$ is downward.
5. $K x \cos 30^{\circ}+m g \cos 30^{\circ}=m a_{t}$. As $x=\frac{R}{4}$ and $K=\frac{m g}{R}, a_{t}=\frac{5 \sqrt{3}}{8} g$;
$N+K x \cos 60^{\circ}=m g \cos 60^{\circ} \Rightarrow N=\frac{3 m g}{8}$

WORK POWER \& ENERGY

EXERCISE-1

1. D

$$
\begin{aligned}
& \mathrm{W}=\int_{x=x_{1}}^{x=x_{2}} F d x=\int_{x=0}^{x=5}\left(7-2 x+3 x^{2}\right) d x=\left.\left(7 x-x^{2}+x^{3}\right)\right|_{x=0} ^{x=5} y \\
& =135 \mathrm{~J}
\end{aligned}
$$

2. A

This is the statement of Work - Kinetic Energy Theorem

3. B

Since the force acting on the particle is perpendicular to the displacement everywhere, the work done iz zero
4. B

Instantaneous power, $P=\vec{F} \cdot \vec{v}=(10 \hat{i}+10 \hat{j}+20 \hat{k}) \cdot(5 \hat{i}+3 \hat{j}+6 \hat{k})$
$=140 \mathrm{~W}$
5. D

Mass of the hanging part $=\frac{\mathrm{M}}{3}$; when the hanging part of the chain is paralled on the table, its centre of mass is raised by $\frac{\mathrm{L}}{6}$.
The work done $=$ rise in potential energy $==\left(\frac{M}{3}\right) g\left(\frac{L}{6}\right)=\frac{M g L}{18}$
6. B
$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{mgR} \Rightarrow \mathrm{v}=\sqrt{2 \mathrm{gR}}$
7. \mathbf{B}
$\mathrm{K}_{\text {longer }} l_{\text {longer }}=\mathrm{K}_{\text {original }} l_{\text {original }}$

$$
\Rightarrow \quad \mathrm{K}_{\text {longer }}=\frac{\mathrm{k} \ell}{(2 \ell / 3)}=\frac{3}{2} \mathrm{k}
$$

8. C
$\mathrm{W}_{\mathrm{F}}=$ increase in potential energy $=\operatorname{mgL}(1-\cos \theta)$
9. D

Mean power of gravity $=\frac{\text { work done by gravity }}{\text { time elapsed }}=0$
10. B

Acceleration, $\mathrm{a}=-\mathrm{kx}$
$\Rightarrow \quad \mathrm{F}=-\mathrm{Kx} \therefore$ loss of $\mathrm{KE}:$ gain of potential energy $\propto \mathrm{x}^{2}$.
11. C
$\mathrm{x}=\frac{\mathrm{t}^{3}}{3} \Rightarrow \mathrm{v}=\mathrm{t}^{2}$
Now, $\mathrm{W}=\Delta \mathrm{KE}=\frac{1}{2} \mathrm{~m}\left(\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{2}^{2}\right)=16 \mathrm{~J}$
12. C
$\mathrm{KE}_{\text {max }}=$ Maximum loss of $\mathrm{KE}=\mathrm{Mg} l(1-\cos \theta)$
13. A

Centre of mass of the rope is lifted by $\frac{h}{2}$ and the back by h. Therefore,
$\mathrm{W}=\mathrm{Mgh}+\mathrm{mg} \frac{\mathrm{h}}{2}=\left(\mathrm{M}+\frac{\mathrm{m}}{2}\right) \mathrm{gh}$
14. D
$\mu x m g=m v \frac{d v}{d x} \Rightarrow \int_{x=0}^{x} \mu x g d x=\int_{v=0}^{v} m v d v$
$\Rightarrow \quad \mathrm{E} \propto \mathrm{x}^{2}$
15. D
$W=\left(\frac{-3 m g}{4}\right) d$
16. C
$\mathrm{W}=\int_{\mathrm{A}}^{\mathrm{B}} \overrightarrow{\mathrm{F}} \cdot \mathrm{d} \overrightarrow{\mathrm{r}}=\frac{\mathrm{F} \pi \mathrm{R}}{2}$
17. C
$\mathrm{P}=\frac{\mathrm{dW}}{\mathrm{dt}}=\frac{3 \mathrm{t}^{2}}{2} \Rightarrow \mathrm{~W}=4 \mathrm{~J} \Rightarrow \mathrm{v}=2 \mathrm{~m} / \mathrm{s}$
18. C
$\mathrm{W}_{1}: \mathrm{W}_{2}: \mathrm{W}_{3}=$ Ratio of corresponding displacements $=1^{2}:\left(2^{2}-1^{1}\right):\left(3^{2}-2^{2}\right)$
$=1: 3: 5$
19. C
$\frac{d v}{d x}=\frac{-12 a}{x^{13}}+\frac{6 h}{x^{7}}=0 \Rightarrow x=\left(\frac{2 a}{b}\right)^{1 / 6} \Rightarrow U_{\min }=\frac{a}{(2 a / b)^{2}}-\frac{b}{(1 a / b)}=-\frac{b^{2}}{4 a}$
$\therefore \quad$ Minimum energy required $=\frac{\mathrm{b}^{2}}{4 \mathrm{a}}$
20. D
$\mu \operatorname{mg} \mathrm{v}_{\max }=\mathrm{P} \Rightarrow \mathrm{v}_{\max }=\frac{\mathrm{P}}{\mu \mathrm{mg}}$
21. C

$$
\mathrm{W}=\frac{\mu \mathrm{mg}}{1+\mu}=163.3 \mathrm{~J}
$$

22. C

The KE intercepted $\propto v^{3}$
23. D

$$
\mathrm{T}-\mathrm{mg}=\mathrm{m} \frac{\mathrm{v}^{2}}{\ell} \Rightarrow \mathrm{~T}=\mathrm{m}\left(\mathrm{~g}+\frac{5 \mathrm{~g} \ell}{\ell}\right)=6 \mathrm{mg}
$$

24. A

$$
\begin{aligned}
& \operatorname{mg}(\mathrm{h}+\mathrm{x})=\frac{1}{2} \mathrm{kx}^{2} \Rightarrow 980 \mathrm{x}^{2}-2 \times 9.8(0.4+\mathrm{x})=0 \\
& \Rightarrow \quad 50 \mathrm{x}^{2}-\mathrm{x}-0.4=0 \\
& \Rightarrow \quad(10 \mathrm{x}-1)(5 \mathrm{x}+0.4)=0 \\
& \Rightarrow \quad \mathrm{x}=0.1 \mathrm{~m}=10 \mathrm{~cm}
\end{aligned}
$$

25. D
$\mathrm{W}=(\mathrm{kx} \hat{\mathrm{j}}) \cdot(\mathrm{ai})+\int_{\mathrm{y}=0}^{\mathrm{y}=\mathrm{a}} \mathrm{k}(\mathrm{y} \hat{\mathrm{i}}+\mathrm{aj}) \cdot d y \hat{\mathrm{j}}=k \mathrm{a}^{2}$

EXERCISE - 2

1. c, d

Since no work is done by the force speed is constant not velocity. $\vec{a}=\frac{v^{2}}{r}$ along the centre of circle.
2. b, c
W.d by all forces $=\Delta$ K.E.
$\Rightarrow \quad \mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{N}}=\mathrm{K} . \mathrm{E}_{\mathrm{f}}-\mathrm{K} \cdot \mathrm{E}_{\mathrm{i}}$
$\Rightarrow \quad \mathrm{mgh}+0=\frac{1}{2} \mathrm{mv}^{2}-0$
$\Rightarrow \quad \mathrm{v}=\sqrt{2 \mathrm{gh}}=\mathrm{v}_{\mathrm{P}}=\mathrm{v}_{\mathrm{Q}}$
where h is the initial height of both blocks from ground.
3. b, c
4. b, c
w. $d=\vec{F} . \vec{d}$
$=(-\hat{i}+2 \hat{j}+3 \hat{k}) \cdot 3 \hat{j}$
$=6 \mathrm{~J}$
w.d. $=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{d}}$
$=(-\hat{i}+2 \hat{j}+3 \hat{k}) \cdot(3 \hat{j}+4 \hat{k})=18 \mathrm{~J}$
5. a, b, c
W.d = Area enclosed by the F-x graph
6. a, d
$\mathrm{a}=\frac{\mathrm{F}_{\text {net }}}{\mathrm{m}}=\frac{10-0.2 \times 2 \times 10}{2}=3 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}(\mathrm{t}=4 \mathrm{~s})=0+3 \times 4=12 \mathrm{~m} / \mathrm{s}$
$\mathrm{s}(\mathrm{t}=4 \mathrm{~s})=\frac{1}{2} \times 3 \times 4^{2}=24 \mathrm{~m}$
w.d by net force $=\Delta K$. E
$=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \times 2 \times 12^{2}$
$=144 \mathrm{~J}$
w.d. by applied force $=10 \times 24=240 \mathrm{~J}$
w.d by friction $=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{d}}=-4 \times 24=-96 \mathrm{~J}$
7. b, c
8. b, c, d
9. a, b, d
w.d by all forces $=\Delta$ K.E.
$\Rightarrow \quad F x-m g x=40 \mathrm{~J}$
$\Rightarrow \quad 20 \mathrm{x}=40 \mathrm{~J}$

$$
\mathrm{x}=2 \mathrm{~m}
$$

w.d.gravity $=-m g x=-2 \times 10 \times 2=-40 \mathrm{~J}$
w.d.tension $=\mathrm{Fx}=40 \times 2=80 \mathrm{~J}$
10. a, d

Power $=\overrightarrow{\mathrm{F}} . \overrightarrow{\mathrm{v}}=\mathrm{Fv}=\mathrm{F} \times$ at or $\mathrm{F} \times \sqrt{2 \mathrm{ax}}$
Since ' a ' and ' F ' are constants
Power varies linearly with time and parabolically with displacement
11. a, \mathbf{c}

Hint: Direction of spring force and displacement are same in (a) \& (c)
12. b, c
$\mathrm{P}_{\mathrm{mg}}=\overrightarrow{\mathrm{F}} . \overrightarrow{\mathrm{v}}$
$=m g(-\hat{\mathrm{j}}) \cdot[\mathrm{u} \cos \theta \hat{\mathrm{i}}+(\mathrm{u} \sin \theta-\mathrm{gt}) \hat{\mathrm{j}}]$
$=-m g(u \sin \theta-g t)$
$\Rightarrow \quad \mathrm{P}<0$ for $\mathrm{t}<\frac{\mathrm{u} \sin \theta}{\mathrm{g}}$ and $\mathrm{P}>0$ for $\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}>\mathrm{t}>\frac{\mathrm{u} \sin \theta}{\mathrm{g}}$
13. a, c, d

$$
\vec{a}=\frac{\vec{F}}{m}=-\frac{\delta U}{m \delta x} \hat{i}-\frac{\delta U}{m \delta y} \hat{j}=-3 \hat{i}-4 \hat{j}
$$

$$
\mathrm{v}(\text { at } \mathrm{x}=0)=\sqrt{\mathrm{u}^{2}+2 \mathrm{as}}
$$

$$
=\sqrt{0^{2}+2 \times 5 \times 10}
$$

$$
=10 \mathrm{~m} / \mathrm{s}
$$

$$
\overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}_{0}+\overrightarrow{\mathrm{u}} \mathrm{t}+\frac{1}{2} \overrightarrow{\mathrm{a}} \mathrm{t}^{2}
$$

$$
=6 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+0+\frac{1}{2}(-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}) 1^{2}
$$

$$
=4.5 \hat{i}+2 \hat{j}
$$

14. c, d
w.d by all force $=$ increase in spring energy

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{Fx}_{0}+\mathrm{mgx}_{0}=\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{0}+\frac{\mathrm{mg}}{\mathrm{k}}\right)^{2}-\frac{1}{2} \mathrm{k}\left(\frac{\mathrm{mg}}{\mathrm{k}}\right)^{2} \\
& \Rightarrow \quad \mathrm{x}_{0}=\frac{2 \mathrm{~F}}{\mathrm{k}}
\end{aligned}
$$

15. b, c, d
w.d. by $\overrightarrow{\mathrm{F}}_{2}=15 \times \frac{\pi}{2} \times 6=45 \pi \mathrm{~J}$
w.d. by $\overrightarrow{\mathrm{F}}_{3}=30 \times 6=180 \mathrm{~J}$
w.d. by $\overrightarrow{\mathrm{F}}_{1}=\int \mathrm{F}_{1} \cos \left(90-\frac{\theta}{2}\right) \operatorname{rd\theta }$
\vec{F}_{1} is conservative in nature as it is always directed towards P.
16. b, d

At highest point $\mathrm{F}_{\text {net }}=\frac{\mathrm{mv}^{\prime 2}}{\ell}$
$\Rightarrow \quad 2 \mathrm{mg}+\mathrm{mg}=\frac{\mathrm{mv}^{\prime 2}}{\ell}$
$\Rightarrow \quad \mathrm{v}^{\prime}=\sqrt{3 \mathrm{~g} \ell}$
Conserving energy velocity at lowest point

$$
\mathrm{v}=\sqrt{7 \mathrm{~g} \ell}
$$

17. b, d
w.d. $=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{d}}=(6 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}) \cdot(-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})$
$=-18-24=-42 \mathrm{~J}$
Had there be no initial velocity particle must have moved along straight line making an angle of 45° with x-axis.

\section*{| IIT-ian's PACE Edu.Pvt.Ltd. | Circular Motion \& WPE | Rg-C \& WPE-11 |
| :--- | :--- | :--- |}

18. a, c, d
$\mathrm{P}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{v}}=+$ ive angle is acute

$$
=- \text { ive angle is obtuse }
$$

Area under graph $=\Delta$ K.E.
$=20 \mathrm{~J}$
19. (a, c)
$\mathrm{mv}_{1}=M v_{2}$, where v_{1} and v_{2} are speeds of mass m and M ,
 as seen from ground. The velocity of m relative to M is v_{12} $=\mathrm{v}_{1}-\left(-\mathrm{v}_{2}\right)$.
Hence, or $t=\frac{1}{V_{12}}=\frac{1}{V_{1}+V_{2}}$ or $v_{1}+v_{2}=l / t$.
20. (a, b)
$\because \mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dr}}=\frac{2 \mathrm{~A}}{\mathrm{r}^{3}}-\frac{\mathrm{B}}{\mathrm{r}^{2}}$ at equilibrium $\mathrm{F}=$ or, $\mathrm{r}=\frac{2 \mathrm{~A}}{\mathrm{~B}}$
At infinity $\mathrm{U}=0 \mathrm{r}=\frac{2 \mathrm{~A}}{\mathrm{~B}}, \mathrm{U}=-\frac{\mathrm{B}^{2}}{4 \mathrm{~A}} \Delta \mathrm{U}=\frac{\mathrm{B}^{2}}{4 \mathrm{~A}}$.
21. (a, c)

From conservation of linear momentum $(1+2) v=(6 \times 1)+(2-3) \quad v=4 m / s$ (of both the blocks)
From work energy therom i.e., $\mathrm{W}_{\text {total }}=\Delta \mathrm{KE}$ on 1 kg block, $\mathrm{W}_{\mathrm{f}}=\frac{1}{2} \times 1 \times\left(4^{2}-6^{2}\right)=-10 \mathrm{~J}$
on 2 kg block $\mathrm{W}_{\mathrm{f}}=\frac{1}{2} \times 2\left(4^{2}-3^{2}\right)=+7 \mathrm{~J} . \therefore$ Net work done by friction is -3 J .
22. (b, d)

In region OA particle is acccelerated, in region $A B$ particle has uniform velocity while in region
$B D$ particle is deceleration., Therefore, work done is positive in region OA , zero in region AB and negative in region BC .
23. (a, c)
at B acceleration of block $=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{2 \mathrm{gR}}{\mathrm{R}}=2 \mathrm{~g}$
24. (a, d)

EXERCISE - III

1. $(\mathrm{A}-\mathrm{q})$

Work energy theorem - w.d. by all forces is equal to change in K.e.
($\mathrm{B}-\mathrm{s}$)
Negative of work done by conservative force is equal to change in potential energy ($\mathrm{C}-\mathrm{r}$)

$$
\begin{aligned}
& \text { W.d } \text { ext. }+\mathrm{W}_{\text {non cons. }}=\Delta \text { K.E. }-\mathrm{W}_{\text {cons. }} \\
& =\Delta \text { K.E. }+\Delta \mathrm{U} \\
& =\Delta \text { T.M.E }
\end{aligned}
$$

2. $(\mathrm{A}-\mathrm{r})$

$$
\begin{aligned}
& \frac{1}{2} m u^{2}=m g R+\frac{1}{2} \mathrm{mv}_{\mathrm{B}}^{2} \\
& \Rightarrow \quad \mathrm{v}_{\mathrm{B}}=\sqrt{7 \mathrm{gR}}
\end{aligned}
$$

(B-q)

$$
\begin{aligned}
& \frac{1}{2} \mathrm{mu}^{2}=\mathrm{mg} \times 2 \mathrm{R}+\frac{1}{2} \mathrm{mv}_{\mathrm{C}}^{2} \\
& \mathrm{v}_{\mathrm{C}}=\sqrt{5 \mathrm{gR}}
\end{aligned}
$$

($\mathrm{C}-\mathrm{p}$)

$$
\mathrm{T}_{\mathrm{B}}=\frac{\mathrm{mv}}{\mathrm{~B}} \mathrm{R}^{2}=7 \mathrm{mg}
$$

($\mathrm{D}-\mathrm{t}$)

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{C}}+\mathrm{mg}=\frac{\mathrm{mv}_{\mathrm{C}}^{2}}{\mathrm{R}} \\
& \mathrm{~T}_{\mathrm{C}}=\frac{\mathrm{m} 5 \mathrm{gR}}{\mathrm{R}}-\mathrm{mg}=4 \mathrm{mg}
\end{aligned}
$$

3. $(A-q)$

$$
\mathrm{w} . \mathrm{d}=\int_{2}^{4} \mathrm{kxdx}=\left[\frac{\mathrm{kx}^{2}}{2}\right]_{2}^{4}=\frac{1}{2} \mathrm{k}\left[4^{2}-2^{2}\right]=+\mathrm{ive}
$$

($\mathrm{B}-\mathrm{p}$)

$$
\mathrm{w} \cdot \mathrm{~d}=\int_{-4}^{-2} \mathrm{kxdx}=\left[\frac{\mathrm{kx}^{2}}{2}\right]_{-4}^{-2}=\frac{1}{2} \mathrm{k}\left[2^{2}-4^{2}\right]=-\mathrm{ive}
$$

(C - r)

$$
\mathrm{w} . \mathrm{d}=\int_{-2}^{2} \mathrm{kxdx}=\left[\frac{\mathrm{kx}^{2}}{2}\right]_{-2}^{2}=0
$$

4. $(A-t),(B-p),(C-s),(D-q)$
$S=\frac{1}{2} \times 2 \times(4)^{2}=16 \mathrm{~m}$
$w^{w} \mathrm{~d}_{\text {gravity }}=-\mathrm{mg} \times 16=-1 \times 10 \times 16=-160 \mathrm{~J}$
$w . d_{\text {normal reaction }}=N \cos \theta \times S=m(g+a) \cos ^{2} \theta \times S=144 \mathrm{~J}$
$w . d_{\text {friction }}=\mathrm{f} \times \mathrm{S} \times \sin \theta$
$=m(g+a) \sin ^{2} \theta \times S=48 \mathrm{~J}$
w.d.forces $=\Delta$ K.E.
$=\frac{1}{2} \mathrm{~m}(\mathrm{at})^{2}=\frac{1}{2} \times 1 \times(2 \times 4)^{2}=32 \mathrm{~J}$
5. c
work done by both against gravity $=\mathrm{mgh}$
6. b

Average Power $=\frac{\mathrm{mgh}}{\mathrm{t}}=\frac{50 \times 10 \times 15}{30}=250 \mathrm{~W}$
7. b

\section*{| IIT-ian's PACE Edu.Pvt.Ltd. | Circular Motion \& WPE | Rg-C \& WPE-11 |
| :--- | :--- | :--- |}

Chemical energy expended by the physicist ends up increasing the potential energy.
8. b

As the physicist falls, gravitational potential gets converted into kinetic energy, increasing his speed. After he hits the cushion, this kinetic energy gets converted into heat.
9. d
Δ K.E. $=\mathrm{K} . \mathrm{E}_{\mathrm{f}}-\mathrm{K} . \mathrm{E}_{\mathrm{i}}=\mathrm{K} . \mathrm{E}_{\mathrm{f}}-0$
= w.d. by mg
$=\mathrm{mgh}^{\prime}$
$=50 \times 10 \times \frac{15}{3}=2500 \mathrm{~J}$
10. a
11. c
12. a

From conservation of energy at A and B, we have $\frac{1}{2} \operatorname{mv}_{A}^{2}=\frac{1}{2} \operatorname{mv}_{B}^{2}+m g R(1+\sin \theta)$
At B the string becomes slack. Therefore
$m g \sin \theta=\frac{m v_{B}^{2}}{R}$
After passing through B, the ball goes in a projectile
$\Rightarrow \quad \mathrm{V}_{\mathrm{B}} \sin \theta \mathrm{t}=\mathrm{R} \cos \theta$
and $-v_{B} \cos \theta t+\frac{1}{2} g t^{2}=R+R \sin \theta$
On solving 1, 2, $3 \& 4$

$$
\begin{aligned}
& \theta=30^{\circ} \\
& \mathrm{v}=\sqrt{\frac{7 \mathrm{gR}}{2}} \text { and } \mathrm{v}_{\mathrm{B}}=\sqrt{\frac{\mathrm{gR}}{2}}
\end{aligned}
$$

13. c
$\lambda(\ell-x) v+\lambda h g d t-\lambda v^{2} d t$
$=\lambda(\ell-(x+d x)](v+d v)$, where λ is mass per unit length
$\Rightarrow \quad h g d t=(\ell-x) d v$
$\Rightarrow \quad \lg \int_{x=0}^{x} \frac{d x}{\ell-x}=\int_{v=0}^{v} v d v$
$\Rightarrow \quad \frac{\mathrm{v}^{2}}{2}=\mathrm{hg} \ln \frac{\ell}{\ell-\mathrm{x}}$
$\therefore \quad \mathrm{v}_{\mathrm{at} \mathrm{B}}=\sqrt{2 \mathrm{gh} \ln \frac{\ell}{\mathrm{h}}}$
14. a
$\mathrm{KE}_{\mathrm{x}}=\lambda(\ell-\mathrm{x}) \mathrm{gh} \ln \frac{\ell}{\ell-\mathrm{x}}$

It is maximum, when $\frac{\ell}{\ell-\mathrm{x}}=\mathrm{e}$

$$
\therefore \quad \mathrm{KE}_{\max }=\lambda \operatorname{hg} \frac{\ell}{\mathrm{e}}=\frac{\mathrm{mgh}}{\mathrm{e}}
$$

15. b

$$
\text { Heat generated }=\lambda(\ell-\mathrm{h}) \mathrm{gh}-\frac{1}{2} \cdot \lambda \mathrm{~h} \cdot 2 \mathrm{gh} \ln \frac{\ell}{\mathrm{~h}}
$$

$$
=\frac{\mathrm{mgh}}{\ell}\left[\ell-\mathrm{h}-\mathrm{h} \ln \frac{\ell}{\mathrm{~h}}\right]
$$

16. b
17. a
18. b
19. c
$\mathrm{U}(\mathrm{x})=20+(\mathrm{x}-3)^{2}$
At $\mathrm{x}=0$,
T.M.E $=\mathrm{U}+\mathrm{K} . \mathrm{E}$
$=20+9+20=49 \mathrm{~J}$
At extreme positions, K.E $=0$
$\Rightarrow \quad \mathrm{U}=49 \mathrm{~J}$
$\Rightarrow \quad 20+(\mathrm{x}-3)^{2}=49$
$\Rightarrow \quad \mathrm{x}-3= \pm \sqrt{29}$
$\Rightarrow \quad \mathrm{x}=3 \pm \sqrt{29}$ i.e., -3.4 and 7.4 m
K.E. max $=$ T.M.E - Min. potential energy
$=49-20($ at $\mathrm{x}=3)$
$=29 \mathrm{~J}$
Body is in equilibrium at min. potential energy
i.e., at $x=3$
20. $\quad \mathrm{W}_{\mathrm{mg}}$ is path and rate independent
21. Total energy is conserved when there is no external and no internal non conservative force.
22. Work done for conservative forces are path independent
23. $\quad \mathrm{W}_{\mathrm{mg}}=\mathrm{mgh}$
24. $\quad \mathrm{F} \cdot \Delta \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{F}} \cdot\left(\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}\right)$
25. $\mathrm{t}=\frac{2 \mathrm{v} \sin \theta}{\mathrm{g}}$ is time of flight and vertical displacement is zero.

\section*{| IIT-ian's PACE Edu.Pvt.Ltd. | Circular Motion \& WPE | Rg-C \& WPE-11 |
| :--- | :--- | :--- |}

EXERCISE-4

1. $\mathrm{W}_{\mathrm{F}}=\mathrm{Fh}=80 \mathrm{~J} ; \mathrm{W}_{\text {weight }}=-(\mathrm{mg}) \mathrm{h}=-40 \mathrm{~J}$.
2. Tension, $\mathrm{T}=\frac{2 \mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{~g}$; acceleration $\mathrm{a}=\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{~g}$

$$
\begin{aligned}
\therefore \quad & \mathrm{W}=\mathrm{T} \cdot \frac{1}{2} \mathrm{at}^{2}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}\left(\mathrm{~m}_{2}-\mathrm{m}_{1}\right)}{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)^{2}} \mathrm{~g}^{2} \mathrm{t}^{2} \\
& =\frac{200}{9} \mathrm{~J}
\end{aligned}
$$

3. $\mathrm{W}=\int_{\mathrm{x}=1}^{\mathrm{x}=2}(2+\mathrm{x}) \mathrm{dx}=3.5 \mathrm{~J}$
4. $\frac{\mathrm{F}}{\sqrt{2}}+\mathrm{N}=\mathrm{mg} ; \frac{\mathrm{F}}{\sqrt{2}}=\mu \mathrm{N}$
$\therefore \quad \frac{\mathrm{F}}{\sqrt{2}}=\mu\left(\mathrm{mg}-\frac{\mathrm{F}}{\sqrt{2}}\right) \Rightarrow \frac{\mathrm{F}}{\sqrt{2}}=\frac{\mu}{\mu+1} \mathrm{mg}=3.6$
(a) $\quad \mathrm{W}_{\mathrm{F}}=\frac{\mathrm{F}}{\sqrt{2}} \mathrm{~S}=7.2 \mathrm{~J}$
(b) $\quad \mathrm{W}_{\text {friction }}=-\mathrm{W}_{\mathrm{F}}=-7.2 \mathrm{~J}$
(c) $\quad \mathrm{W}_{\text {gravity }}=0$
5. $\mathrm{W}=$ Area under the curve $=10 \times 2+\frac{1}{2} \times 2 \times 10$
$=30 \mathrm{~J}$
6. $\mathrm{W}_{\mathrm{F}}=$ increase in potential energy $=\operatorname{mg} \ell(1-\cos \theta)$
7. $\mathrm{dW}=\mathrm{mg}(\mu \cos \theta+\sin \theta) \mathrm{ds}=\mathrm{mg}(\mu \mathrm{d} \ell+\mathrm{dh})$

$$
\therefore \quad \mathrm{W}=\operatorname{mg}(\mu \ell+\mathrm{h})
$$

8. $\mathrm{W}=\Delta \mathrm{KE}=-\frac{1}{2}(2) 20^{2}=-400 \mathrm{~J}$
9. $\mathrm{W}=\Delta \mathrm{KE}=\frac{1}{2} \mathrm{ma}^{2} \mathrm{v}$
10. a) (2m)g $\mathrm{x}_{\mathrm{m}}=\frac{1}{2} \mathrm{k} \mathrm{x}_{\mathrm{m}}^{2} \Rightarrow \mathrm{x}_{\mathrm{m}}=\frac{4 \mathrm{mg}}{\mathrm{k}}$
b) $\quad \frac{1}{2}(3 \mathrm{~m}) \mathrm{v}^{2}+\frac{1}{2} \mathrm{~K}\left(\frac{\mathrm{x}_{\mathrm{m}}}{2}\right)^{2}=(2 \mathrm{~m}) \mathrm{g}\left(\frac{\mathrm{x}_{\mathrm{m}}}{2}\right)$
$\Rightarrow \mathrm{v}=2 \mathrm{~g} \sqrt{\frac{\mathrm{~m}}{3 \mathrm{k}}}$
c) $2 m g-k \frac{x_{m}}{4}=(3 m) a \Rightarrow a=\frac{g}{3}$
11. $K\left(\frac{2 m_{A} g}{K}\right)=m g \Rightarrow m_{A}=\frac{m}{2}$
12. Let x be the extension of the spring and θ the angle that the spring makes with the vertical at break off.

\section*{| IIT-ian's PACE Edu.Pvt.Ltd. | Circular Motion \& WPE | Rg-C \& WPE-11 |
| :--- | :--- | :--- |}

$K \mathrm{x} \cos \theta=\mathrm{mg} \Rightarrow 40 \mathrm{x} \frac{0.4}{0.4+\mathrm{x}}=3.2$
$\Rightarrow \quad \mathrm{x}=0.1 \mathrm{~m}$; The \ldots of $\mathrm{B}=$ the slide of $\mathrm{A}=\sqrt{(0.5)^{2}-(0.4)^{2}}=0.3$ metres $=\mathrm{h}$ (say)

$$
\frac{1}{2}(2 \mathrm{~m}) \mathrm{v}^{2}+\frac{1}{2} \mathrm{Kx}^{2}=\mathrm{mgh}
$$

$\Rightarrow \quad \mathrm{v}=1.54 \mathrm{~m} / \mathrm{s}$
13. $-\mu \frac{m v^{2}}{R}=m \frac{d v}{d t} \Rightarrow \int_{v=v_{0}}^{v} \frac{d v}{v^{2}}=-\frac{\mu}{R} \int_{t=0}^{t} d t$
$\Rightarrow \quad \frac{1}{v}=\frac{1}{v_{0}}+\frac{\mu \mathrm{t}}{\mathrm{R}} \Rightarrow \mathrm{v}=\mathrm{v}_{0} \frac{\mathrm{R}}{\mathrm{R}+\mu \mathrm{v}_{0} \mathrm{t}} ; \mathrm{S}=\int_{0}^{\mathrm{t}} \mathrm{vdt}=\frac{\mathrm{R}}{\mu} \ln \left(1+\frac{\mu \mathrm{v}_{0}}{\mathrm{R}} \mathrm{t}\right)$
14. $\mathrm{Fb}\left(1^{-\sin \theta}\right)=2 \times \frac{1}{2} \mathrm{mv}^{2} \Rightarrow \mathrm{v}=\sqrt{\frac{\mathrm{Fb}(1-\sin \theta)}{\mathrm{m}}}, \mathrm{F}_{\text {max }}=2 \mathrm{mg}$
15.

Conserving mechanical energy:

$$
2 \times 10 \times 1=0.5 \times 10 \times(\sqrt{5}-1)+\frac{1}{2} \times 2 \times \mathrm{v}^{2}+\frac{1}{2} \times 0.5\left(\frac{2 \mathrm{v}}{\sqrt{5}}\right)^{2}
$$

$$
\Rightarrow \quad v=3.39 \mathrm{~m} / \mathrm{s}
$$

16. $W=\int_{1}^{2} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{~s}}=\int_{(2,3)}^{(4,6)}\left(3 x^{2} \hat{i}+2 y \hat{j}\right) \cdot(d x \hat{i}+d y \hat{j}+d z \hat{k})$

$$
\begin{aligned}
& =\int_{(2,3)}^{(4,6)}\left(3 x^{2} d x+2 y d y\right)=\left.x^{3}\right|_{2} ^{4}+\left.y^{2}\right|_{3} ^{6} \\
& =83 \mathrm{~J}
\end{aligned}
$$

17. (i) $W=\int_{0 \text { (alongoc) }}^{c}(x y \hat{i}+x y \hat{j}) \cdot(d x \hat{i}+d y \hat{j})$
$=\int_{0}^{4} x^{2}(\hat{i}+\hat{j}) \cdot 2 d x \hat{i}=\int_{0}^{1} 2 x^{2} d x=\frac{2}{3} J$
(ii) $\quad W=\int_{0 \text { (along OA) }}^{A} x y(\hat{i}+\hat{j}) \cdot d x \hat{i}+\int_{A \text { (along AC) }}^{C} x y(\hat{i}+\hat{j}) \cdot d y \hat{j}$

$$
=0+\int_{y=0}^{y=1} y d y=\frac{1}{2} J
$$

(iii) $\mathrm{W}=0+\int_{\mathrm{k}=0}^{\mathrm{k}=1} \mathrm{x} d \mathrm{x}=\frac{1}{2} \mathrm{~J}$
18. (a) $\int \mathrm{dmg} \mathrm{h}=\mathrm{mgh}$
(b) $\quad \int_{x=0}^{x=\ell}\left(\frac{m}{\ell} d x\right) g x=\frac{1}{2} m g \ell$
(c) $\quad \int_{\theta=0}^{\theta=\ell / \mathrm{R}}\left(\frac{\mathrm{m}}{\ell} \mathrm{Rd} \theta\right) \mathrm{g}(\mathrm{R} \cos \theta)=\frac{\mathrm{mgR}^{2}}{\ell} \sin \frac{\ell}{\mathrm{R}}$
19. (a) $u \cos \theta=v$
(b) $\mathrm{m} \times 10 \times 5=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{v}}{0.8}\right)^{2}$

$$
\Rightarrow \mathrm{v}=\frac{40}{\sqrt{41}} \mathrm{~m} / \mathrm{s}
$$

20. $\quad \operatorname{mg}\left(\frac{3}{4} \mathrm{~d}\right)+\frac{1}{2} \mathrm{k}\left(\frac{\mathrm{D}}{4}\right)^{2}=\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \quad \mathrm{v}=\mathrm{d} \sqrt{\frac{3 \mathrm{~g}}{2 \mathrm{~d}}+\frac{\mathrm{k}}{16 \mathrm{~m}}}$
21. $\quad \mathrm{mg} \mathrm{h}_{\text {min }}=\operatorname{mg} 2 \mathrm{r}+\frac{1}{2} \mathrm{~m}(\sqrt{\mathrm{gr}})^{2}$
$\Rightarrow \quad \mathrm{h}_{\min }=\frac{5 \mathrm{r}}{2} ; \operatorname{mg}(5 \mathrm{r})-\operatorname{mg} 2 \mathrm{r}=\frac{1}{2} \mathrm{mv}^{2}$
Now, $F_{\text {resultant }}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}=6 \mathrm{mg}$
22. $\operatorname{mg}(1-\cos \theta)=\frac{\mathrm{mv}^{2}}{\ell}$
$\frac{1}{2} \mathrm{mg} \ell+\mathrm{mg} \ell(1-\cos \theta)=\frac{3}{2} \mathrm{mv}^{2}$
From (1) and (2)

$$
\mathrm{v}=\sqrt{\frac{\mathrm{g} \ell}{3}} ; \theta=\cos ^{-1} \frac{2}{3}
$$

23. $\frac{1}{2} \mathrm{mv}_{0}^{2}=\operatorname{mg} \ell\left(1-\cos 60^{\circ}\right)$
$\Rightarrow \quad \mathrm{v}_{0}=\sqrt{\mathrm{g} \ell}=\sqrt{9.8 \times 5}=7 \mathrm{~m} / \mathrm{s}$
24. $\frac{1}{2} m(\sqrt{5 g R})^{2}-\operatorname{mgR}(1+\cos \alpha)=\frac{1}{2} m v^{2}$

Also, $\mathrm{t}_{\text {flight }}=\frac{2 \mathrm{R} \sin \alpha}{\mathrm{v} \cos \alpha}=\frac{2 \mathrm{v} \sin \alpha}{\mathrm{g}}$
From (1) and (2)

$$
\alpha=0 \text { or } \alpha=60^{\circ}
$$

25. $\frac{1}{2} m v^{2}-m g \cdot 2 \mathrm{R}=\frac{1}{2} \mathrm{mv}^{2}$, where v is velocity at the highest point.

$$
\Rightarrow \quad v=\sqrt{u^{2}-4 g R}
$$

Now, $\mathrm{v}_{\mathrm{flight}}=3 \mathrm{R}$
$\Rightarrow \quad \sqrt{u^{2}-4 g R} \sqrt{\frac{4 R}{g}}=3 R$

$$
\Rightarrow \quad \mathrm{u}=\frac{5}{2} \sqrt{\mathrm{gR}} ;
$$

$\mathrm{x}_{\text {min }}=\mathrm{v}_{\text {min }} \mathrm{t}_{\text {flight }}=\sqrt{\mathrm{gh}} \sqrt{\frac{4 \mathrm{R}}{\mathrm{g}}}=2 \mathrm{R}$
26. $\int_{x=0}^{x=\pi R}(\lambda d x) g\left[r \sin \frac{x}{r}+x\right]+\frac{1}{2}(\pi r \lambda) v^{2}$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{v}=\sqrt{2 \operatorname{gr}\left(\frac{2}{\pi}+\frac{\pi}{2}\right)} \tag{1}
\end{equation*}
$$

27. $\operatorname{mgR}\left(\frac{1}{4}+1-\cos \theta\right)=\frac{1}{2} m v^{2}$
$\mathrm{mg} \cos \theta=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{R}}$
$\Rightarrow \quad \theta=\cos ^{-1} \frac{5}{6}$
28. $\quad \operatorname{mg} \sqrt{\left(\frac{\mathrm{n}+1}{\mathrm{n}+3}\right)-1}-\operatorname{Mg}\left(\sqrt{\mathrm{n}^{1}-1}-\sqrt{\left(\frac{\mathrm{n}+1}{2}\right)^{2}-1}\right)>0$
$\Rightarrow \quad \frac{\mathrm{m}}{\mathrm{M}}>2 \sqrt{\frac{\mathrm{n}+1}{\mathrm{n}+3}}-1$
29. $(\mathrm{FR} \sqrt{2}-\mathrm{mgR})=\frac{1}{2} \mathrm{mv}^{2}$

$$
\Rightarrow \quad \mathrm{v}=\sqrt{2 \mathrm{R}\left(\frac{\mathrm{~F} \sqrt{2}}{\mathrm{~m}}-\mathrm{g}\right)}
$$

30. $\frac{1}{2} \operatorname{mv}_{0}^{2}=\int_{x=0}^{x=2 L}(G x)(m g) d x+\frac{1}{2} k L^{2}$
$\Rightarrow \quad v=\sqrt{4 a g+\frac{k}{m}}$
31. Stretch $\mathrm{x}=0.4\left(\sec 30^{\circ}-1\right)=0.4\left(\frac{2}{\sqrt{3}}-1\right) ; \mathrm{kx} \mathrm{sin} 30^{\circ}=\mu\left(\mathrm{mg}-\mathrm{kx} \cos 30^{\circ}\right)$

$$
\Rightarrow \quad \mathrm{kx}=\frac{\mu \mathrm{mg}}{\sin 30^{\circ}+\mu \cos 30^{\circ}}
$$

Now, $\mathrm{W}=\Delta \mathrm{U}=\frac{1}{2} \mathrm{kx}^{2}=0.09 \mathrm{~J}$
32. a) $m g(1-\cos \theta)=\frac{1}{2} m v^{2}$

$$
\begin{equation*}
\mathrm{F}+\mathrm{mg} \cos \theta=\frac{\mathrm{mv}^{2}}{\mathrm{R}} \tag{1}
\end{equation*}
$$

From (1) and (2)

$$
\mathrm{F}=\mathrm{mg}(2-3 \cos \theta)
$$

$\mathrm{N}=\mathrm{Mg}-2 \mathrm{~F} \cos \theta,=\mathrm{Mg}-2 \mathrm{mg}(2-3 \cos \theta) \cos \theta$
which is minimum when $\theta=\cos ^{-1} \frac{1}{3}$
b) $\quad \mathrm{N}=0 \Rightarrow \frac{\mathrm{~m}}{\mathrm{M}}=\frac{3}{2}$

EXERCISE - V

1. (b)

The centripetal acceleration

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{c}}=\mathrm{k}^{2} \mathrm{rt}^{2} \text { or } \frac{\mathrm{v}^{2}}{\mathrm{r}}=\mathrm{k}^{2} \mathrm{rt}^{2} \\
& \therefore \quad v=k r t
\end{aligned}
$$

So, tangential acceleration, $\mathrm{a}_{\mathrm{t}}=\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{kr}$
Work is done by tangential force.
Power $=F_{t} . v . \cos 0^{\circ}$

$$
\begin{aligned}
& =\left(\mathrm{m} \mathrm{a}_{\mathrm{t}}\right)(\mathrm{krt}) \\
& =(\mathrm{mkr})(\mathrm{krt}) \\
& =\mathrm{mk}^{2} \mathrm{r}^{2} \mathrm{t}
\end{aligned}
$$

2.

(b)

The force constant of a spring is inversely proportional to the length of the spring.
Let the original length of spring be L and spring constant is K (given)
Therefore,

$$
\mathrm{K} \times \mathrm{L}=\frac{2 \mathrm{~L}}{3} \times \mathrm{K}^{\prime} \quad \Rightarrow \mathrm{K}^{\prime}=\frac{3}{2} \mathrm{~K}
$$

3. (d)

$$
\begin{aligned}
d U_{(x)}= & -F d x \\
\therefore \quad U_{x} & =-\int_{0}^{x} F d x \\
& =\frac{\mathrm{kx}^{2}}{2}-\frac{\mathrm{ax}^{4}}{4}
\end{aligned}
$$

$\mathrm{U}=0$ at $\mathrm{x}=0$ and at $\mathrm{x}=\sqrt{\frac{2 \mathrm{k}}{\mathrm{a}}} ; \Rightarrow$ we have potential energy zero twice (out of which one is at origin).
Also, when we put $\mathrm{x}=0$ in the function,
We get $\mathrm{F}=0$. But $\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dx}}$
\Rightarrow At $x=0 ; \frac{d U}{d x}=0$ i.e. the slope of the graph should be zero. These characteristics are represents by (d).

\section*{| IIT-ian's PACE Edu.Pvt.Ltd. | Circular Motion \& WPE | Rg-C \& WPE-11 |
| :--- | :--- | :--- |}

4. (b)

Let the maximum extension of the spring be x as shown in the figure. Work is done by the gravitational and the spring force. There is no change in the kinetic energy between the initial and final position of the mass.
From Work-energy theorem;
$\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{s}}=0$
Where $\mathrm{W}_{\mathrm{g}}=$ work done by gravity
And $\mathrm{W}_{\mathrm{s}}^{\mathrm{g}}=$ work done by spring
$\Rightarrow+\mathrm{Mgx}-\frac{1}{2} \mathrm{kx}^{2}=0$
$\Rightarrow \mathrm{x}=\frac{2 \mathrm{Mg}}{\mathrm{k}}$
5. (b)

In a conservative field work done does not depend on the path. The gravitational field is a conservative field.

$$
\therefore \mathrm{W}_{1}=\mathrm{W}_{2}=\mathrm{W}_{3}
$$

6. (b)

We know that

$$
\begin{aligned}
& \Delta \mathrm{U}=-\int_{0}^{\mathrm{x}} \mathrm{Fdx} \text { or } \Delta \mathrm{U}=-\int_{0}^{\mathrm{x}} \mathrm{k} \mathrm{xdx} \\
& \Rightarrow \mathrm{U}_{(\mathrm{x})}-\mathrm{U}_{(0)}=-\frac{\mathrm{kx}^{2}}{2}
\end{aligned}
$$

Given $\mathrm{U}_{(0)}=0$
$U_{(x)}=-\frac{k x^{2}}{2}$
7. (d)

$$
\begin{equation*}
\mathrm{v}=\sqrt{5 \mathrm{gL}} \tag{1}
\end{equation*}
$$

$\left(\frac{\mathrm{v}}{2}\right)^{2}=\mathrm{v}^{2}-2 \mathrm{gh}$
$\mathrm{h}=\mathrm{L}(1-\cos \theta) \quad \ldots$ (3)
Solving Eqs. (1), (2) and (3), we get

$$
\cos \theta=-\frac{7}{8} \text { or } \theta=\cos ^{-1}\left(-\frac{7}{8}\right)=151^{\circ}
$$

8. (c)

When the block B is displaced towards wall 1 , only spring S_{1} is compressed and S_{2} is in its natural state. This happens because the other end of S_{2} is not attached to the wall but is free. Therefore the energy stored in the system $=\frac{1}{2} k_{1} x^{2}$. When the block is released, it will come back to the equilibrium position, gain momentum, overshoot to equilibrium position and move towards wall 2. As this happens, the spring S_{1} comes to its natural length and S_{2} gets compressed. As there are no frictional forces involved, the P.E. stored in the spring S_{1} gets stored as the P.E. of spring S_{2} when the block B reaches its extreme position after compressing S_{2} by y.
$\therefore \quad \frac{1}{2} \mathrm{k}_{1} \mathrm{x}^{2}=\frac{1}{2} \mathrm{k}_{2} \mathrm{y}^{2}$
$\frac{1}{2} \times \mathrm{kx}^{2}=\frac{1}{2} 4 \mathrm{ky}^{2}$
$\mathrm{x}^{2}=4 \mathrm{y}^{2}$
$\therefore \quad \frac{\mathrm{y}}{\mathrm{x}}=\frac{1}{2}$
9. (b)

The forces acting on the bead as seen by the observer in the accelerated frame are: (a) N ; (b) mg ; (c) ma (Pseudo force).
Let θ is the angle which the tangent at P makes with the X axis. As the bead is in equilibrium with respect to the wire, therefore
$\mathrm{N} \sin \theta=\mathrm{ma}$ and $\mathrm{N} \cos \theta=\mathrm{mg}$
$\therefore \quad \tan \theta=\frac{\mathrm{a}}{\mathrm{g}}$
But $\mathrm{y}=\mathrm{kx}^{2}$. Therefore,
$\frac{d y}{d x}=2 k x=\tan \theta$

From (i) \& (ii)
$2 \mathrm{kx}=\frac{\mathrm{a}}{\mathrm{g}} \Rightarrow \mathrm{x}=\frac{\mathrm{a}}{2 \mathrm{~kg}}$
10. Let M strikes with speed v . Then, velocity of m at this instant will be $\mathrm{v} \cos \theta$ or $\frac{2}{\sqrt{5}} \mathrm{v}$. Further M will fall a distance of 1 m while m will rise up by $(\sqrt{5}-1) \mathrm{m}$. From energy conservation: decrease in potential energy of $\mathrm{M}=$ increase in potential energy of $m+$ increase in kinetic energy of both the blocks.

or (2) (9.8) (1) $=(0.5)(9.8)(\sqrt{5}-1)+\frac{1}{2} \times 2 \times \mathrm{v}^{2}+\frac{1}{2} \times 0.5 \times\left(\frac{2 \mathrm{v}}{\sqrt{5}}\right)^{2}$
Solving this equation, we get $\mathrm{v}=3.29 \mathrm{~m} / \mathrm{s}$

\section*{| IIT-ian's PACE Edu.Pvt.Ltd. | Circular Motion \& WPE | Rg-C \& WPE-11 |
| :--- | :--- | :--- |}

11. Let the string slacks at point Q as shown in figure. From P to Q path is circular and beyond Q path is parabolic. At point C , velocity of particle becomes horizontal, therefore, $\mathrm{QD}=$ half the range of the projectile.
Now, we have following equations
(1) $\mathrm{T}_{\mathrm{Q}}=0$. Therefore, $\mathrm{mg} \sin \theta=\frac{\mathrm{mv}^{2}}{\mathrm{~L}}$
(2) $\mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{gh}=\mathrm{u}^{2}-2 \mathrm{gL}(1+\sin \theta)$
(3) $\mathrm{QD}=\frac{1}{2}$ (Range)
$\Rightarrow \quad\left(\mathrm{L} \cos \theta-\frac{\mathrm{L}}{8}\right)=\frac{\mathrm{v}^{2} \sin 2\left(90^{\circ}-\theta\right)}{2 \mathrm{~g}}=\frac{\mathrm{v}^{2} \sin 2 \theta}{2 \mathrm{~g}}$
Eq. (iii) canbe written as

$$
\left(\cos \theta-\frac{1}{8}\right)=\left(\frac{\mathrm{v}^{2}}{\mathrm{gL}}\right) \sin \cos \theta
$$

Substituting value of $\left(\frac{\mathrm{v}^{2}}{\mathrm{gL}}\right)=\sin \theta$ from eq. (i), we get
$\left(\cos \theta-\frac{1}{8}\right)=\sin ^{2} \theta-\theta=\left(1-\cos ^{2} \theta\right) \cos \theta$
or $\cos \theta-\frac{1}{8}=\cos \theta-\cos ^{3} \theta$
$\therefore \quad \cos ^{3} \theta=\frac{1}{8}$ or $\cos \theta=\frac{1}{2}$ or $\theta=60^{\circ}$
From Eq. (i) $v^{2}=g L \sin \theta=g L \sin 60^{\circ}$
or $\quad v^{2}=\frac{\sqrt{3}}{2} g L$
$\therefore \quad$ Substituting this value of v^{2} in Eq. (ii)

$$
\begin{aligned}
& u^{2}=v^{2}+2 g L(1+\sin \theta) \\
& =\frac{\sqrt{3}}{2} g L+2 g L\left(1+\frac{\sqrt{3}}{2}\right) \\
& =\frac{3 \sqrt{3}}{2} g L+2 g L \\
& =g L\left(2+\frac{3 \sqrt{3}}{2}\right) \\
& u=\sqrt{g L}\left(2+\frac{3 \sqrt{3}}{2}\right)
\end{aligned}
$$

12. The ball is moving in a circular motion. The necessary centripetal force is provided by $(\mathrm{mg} \cos \theta-\mathrm{N})$. Therefore,

$m g \sin \theta-N_{A}=\frac{\mathrm{mv}^{2}}{\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right)}$
According to energy conservation
$\frac{1}{2} \mathrm{mv}^{2}=\operatorname{mg}\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right)(1-\cos \theta) \ldots$
From (i) and (ii)
$\mathrm{N}_{\mathrm{A}}=\mathrm{mg}(3 \cos \theta-2)$
The above equation shows that as θ increases N_{A} decreases. At a particular value of $\theta, \mathrm{N}_{\mathrm{A}}$ will become zero and the ball will lose contact with sphere A. This condition can be found by putting $\mathrm{N}_{\mathrm{A}}=0$ in eq. (iii)
$0=m g(3 \cos \theta-2)$
$\therefore \quad \theta=\cos ^{-1}\left(\frac{2}{3}\right)$
The graph between N_{A} and $\cos \theta$
From equation (iii) when $\theta=0, \mathrm{~N}_{\mathrm{A}}=\mathrm{mg}$.
When $\therefore \quad \theta=\cos ^{-1}\left(\frac{2}{3}\right)$

The graph is a straight line as shown
when $\theta>\cos ^{-1}\left(\frac{2}{3}\right)$
$\mathrm{N}_{\mathrm{B}}-(\mathrm{mg} \cos \theta)=\frac{\mathrm{mv}^{2}}{\mathrm{R}+\frac{\mathrm{d}}{2}}$
$\Rightarrow \mathrm{~N}_{\mathrm{B}}+\mathrm{mg} \cos \theta=\frac{\mathrm{mv}^{2}}{\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right)}$

Using energy conservation

$$
\begin{align*}
& \frac{1}{2} \mathrm{mv}^{2}=\operatorname{mg}\left[\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right)-\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right) \cos \theta\right] \\
& \frac{\mathrm{mv}^{2}}{\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right)}=2 \mathrm{mg}[1-\cos \theta] \quad \ldots(\mathrm{v}) \tag{v}
\end{align*}
$$

From (iv) and (v), we get
$\mathrm{N}_{\mathrm{B}}+\mathrm{mg} \cos \theta=2 \mathrm{mg}-2 \mathrm{mg} \cos \theta$
$\mathrm{N}_{\mathrm{B}}=\operatorname{mg}(2-3 \cos \theta)$
When $\cos \theta=\frac{2}{3}, \mathrm{~N}_{\mathrm{B}}=0$
When $\cos \theta=-1, \mathrm{~N}_{\mathrm{B}}=5 \mathrm{mg}$
13. Given $\mathrm{m}=0.36 \mathrm{~kg}, \mathrm{M}=0.72 \mathrm{~kg}$.

The figure shows the forces on m and M . When the system is released, let the acceleration be a. Then

$$
\begin{aligned}
& T-m g= m a \\
& M g-T=M a \\
& \therefore \quad a=\frac{(M-m) g}{M+m}=g / 3 \\
& \text { and } T= 4 m g / 3
\end{aligned}
$$

For block m:
$\mathrm{u}=0, \mathrm{a}=\mathrm{g} / 3, \mathrm{t}=1, \mathrm{~s}=$?
$\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}=0+\frac{1}{2} \times \frac{\mathrm{g}}{3} \times 1^{1}=\mathrm{g} / 6$
\therefore Work done by the string on m is
$\overrightarrow{\mathrm{T}} . \overrightarrow{\mathrm{s}}=\mathrm{Ts}=4 \frac{\mathrm{mg}}{3} \times \frac{9}{6}=\frac{4 \times 0.36 \times 10 \times 10}{3 \times 6}=8 \mathrm{~J}$

