CONTINUITY \& DIFFERENTIABILITY
 EXERCISE 1(A)

1. (d)
L.H.L. at $x=3, \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(x+\lambda)=\lim _{h \rightarrow 0}(3-h+\lambda)=3+\lambda$
R.H.L. at $x=3, \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(3 x-5)=\lim _{h \rightarrow 0}\{3(3+h)-5\}=4$

Value of function $f(3)=4$
For continuity at $x=3$
Limit of function $=$ value of function $3+\lambda=4 \Rightarrow \lambda=1$.
2. (c)

If function is continuous at $x=0$, then by the definition of continuity $\mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(\mathrm{x})$
Since $f(0)=k$. Hence, $f(0)=k=\lim _{x \rightarrow 0}(x)\left(\sin \frac{1}{x}\right)$
$\Rightarrow k=0$ (a finite quantity lies between -1 to 1)
$\Rightarrow k=0$.
3. (c)

Since $\mathrm{f}(\mathrm{x})$ is continuous at $x=1$,
$\Rightarrow \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
Now $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0} 2(1-h)+1=3$ i.e., $\lim _{x \rightarrow 1^{-}} f(x)=3$
Similarly, $\lim _{x \rightarrow+^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} 5(1+h)-2$ i.e., $\lim _{x \rightarrow 1^{+}} f(x)=3$
So according to equation (i), we have $k=3$.
4. (d)

We have $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \sin \frac{1}{x}=$ An oscillating number which oscillates between -1 and 1 .
Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist.
Consequently $\mathrm{f}(\mathrm{x})$ cannot be continuous at $\mathrm{x}=0$ for any value of k.
5. (c)

$$
\begin{aligned}
\mathrm{LHL} & =\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} m(1-h)^{2}=m \\
\text { RHL } & =\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} 2(1+h)=2 \text { and } f(1)=m
\end{aligned}
$$

Function is continuous at $\mathrm{x}=1, \quad \therefore \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(1)$
Therefore $\mathrm{m}=2$.
6. (a)

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(\cos x)^{1 / x}=k \Rightarrow \lim _{x \rightarrow 0} \frac{1}{X} \log (\cos x)=\log k \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{1}{X} \lim _{x \rightarrow 0} \log \cos x=\log k \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{1}{x} \times 0=\log _{e} k \Rightarrow k=1 .
\end{aligned}
$$

7. (b)

Since f is continuous at $\mathrm{x}=\frac{\pi}{4} ; \quad \therefore \mathrm{f}\left(\frac{\pi}{4}\right)=\underset{\mathrm{h} \rightarrow 0}{\mathrm{f}}\left(\frac{\pi}{4}+\mathrm{h}\right)=\underset{\mathrm{h} \rightarrow 0}{\mathrm{f}}\left(\frac{\pi}{4}-\mathrm{h}\right)$
$\Rightarrow \frac{\pi}{4}+\mathrm{b}=\frac{\pi}{4}+\mathrm{a}^{2} \Rightarrow \mathrm{~b}=\mathrm{a}^{2}$
Also as f is continuous at $\mathrm{x}=\frac{\pi}{2}$;
$\therefore \mathrm{f}\left(\frac{\pi}{2}\right)=\operatorname{limf}_{\mathrm{h} \rightarrow 0}\left(\frac{\pi}{2}+\mathrm{h}\right)=\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}\left(\frac{\pi}{2}-\mathrm{h}\right)$
$\Rightarrow 2 b+a=b \Rightarrow a=-b$.
Hence $(-1,1) \&(0,0)$ satisfy the above relations.
8. (c)
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0}\left[2+\sin \frac{\pi}{2}(1-h)\right]=3$
Similarly, $\lim _{x \rightarrow 1^{+}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}(1+\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \mathrm{a}(1+\mathrm{h})+\mathrm{b}=a+b$
$\because \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$ so $\lim _{\mathrm{x} \rightarrow \mathrm{l}^{-}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow \mathrm{l}^{+}} \mathrm{f}(\mathrm{x})=\mathrm{f}(1)$
$\Rightarrow \mathrm{a}+\mathrm{b}=3$
Again, $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} a(2-h)+b=2 a+b$
and $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0} f(2+h)=\lim _{h \rightarrow 0} \tan \frac{\pi}{8}(2+h)=1$
$f(x)$ is continuous in $(-\infty, 6)$, so it is continuous at $x=2$ also, so
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
$\Rightarrow 2 \mathrm{a}+\mathrm{b}=1$
Solving (i) and (ii) $a=-2, b=5$.
9. (a)
$\lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\frac{\pi}{2}, \lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=-\frac{\pi}{2}$
Since $\lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x) \neq \lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)$,
\therefore Function is discontinuous at $\mathrm{x}=\frac{\pi}{2}$
10. (b)
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(\frac{2 \sin ^{2} 3 x}{(3 x)^{2}}\right) 3=6$ and
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{9+\sqrt{x}}-3}=\lim _{x \rightarrow 0^{+}}(\sqrt{9+\sqrt{x}}+3)=6$
Hence $\mathrm{a}=6$.
11. (c)

The function $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}+\mathrm{x}-6}$ is discontinuous at 2 points.
The function $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}+\mathrm{x}-6} \& \mathrm{~g}(\mathrm{x})=\frac{1}{\mathrm{x}-1} \Rightarrow \mathrm{~g}(\mathrm{f}(\mathrm{x}))=\frac{1}{\mathrm{x}^{2}+\mathrm{x}-7}$
$g(f(x))$ is discontinuous at 4 points.
Hence, the composite $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ is discontinuous at three points $\mathrm{x}=\frac{2}{3}, 1 \& \frac{3}{2}$
12. (b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\ln b \ln (a+x)-\ln a \ln (b-x)}{x}=\lim _{x \rightarrow 0} \frac{\ln b(\ln (a+x)-\ln a)-\ln a(\ln a \ln (b-x)-\ln b)}{x} \\
& =\ln b \lim _{x \rightarrow 0} \frac{(\ln (a+x)-\ln a)}{x}+\ln a \lim _{x \rightarrow 0} \frac{(\ln (b-x)-\ln b)}{x} \\
& =\frac{\ln b}{a} \lim _{x \rightarrow 0} \frac{\ln \left(1+\frac{x}{a}\right)}{\frac{x}{a}}+\frac{\ln a}{b} \lim _{x \rightarrow 0} \frac{\ln \left(1+\frac{x}{b}\right)}{\frac{x}{b}} \\
& =\frac{\ln b}{a}+\frac{\ln a}{b}=\frac{\ln \left(b^{b} a^{a}\right)}{a b}
\end{aligned}
$$

13. (b)

$$
\mathrm{f}(2)=2, \mathrm{f}\left(2^{+}\right)=\lim _{\mathrm{x} \rightarrow 2^{+}} \frac{\mathrm{x}^{2}-5 \mathrm{x}+6}{\mathrm{x}^{2}-4}=\lim _{\mathrm{x} \rightarrow 2^{+}} \frac{(\mathrm{x}-3)}{\mathrm{x}+2)}=-\frac{1}{4}
$$

14. (c)

Clearly from curve drawn of the given function $f(x)$, it is discontinuous at $x=0$.

15. (b)
$f(x)=\left\{\begin{aligned}(1+|\tan x|)^{\frac{a}{3|\tan x|}}, & -\frac{\pi}{6}<x<0 \\ b & ,\end{aligned}\right.$
For $\mathrm{f}(\mathrm{x})$ to be continuous at $\mathrm{x}=0$
$\Rightarrow \lim _{\mathrm{x} \rightarrow 0^{-}} \mathrm{f}(\mathrm{x})=\mathrm{f}(0)=\lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}(\mathrm{x})$
$\Rightarrow \lim _{x \rightarrow 0}(1+|\tan x|)^{\frac{a}{3|\tan x|}}=\mathrm{e}^{\lim _{x \rightarrow 0^{-}}\left((1+\tan x \mid-1) \frac{a}{3|\tan x|}\right)}=\mathrm{e}^{a / 3}$
Now, $\lim _{x \rightarrow 0^{+}} \mathrm{e}^{\frac{\tan 6 \mathrm{x}}{\tan 3 x}}=\lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{e}^{\left(\frac{\tan 6 \mathrm{x}}{6 \mathrm{x}} .6 \mathrm{x}\right) /\left(\frac{\tan 3 \mathrm{x}}{3 \mathrm{x}} \cdot 3 \mathrm{x}\right)}=\mathrm{e}^{2}$
$\therefore \mathrm{e}^{\mathrm{a} / 3}=\mathrm{b}=\mathrm{e}^{2} \Rightarrow \mathrm{a}=6$ and $\mathrm{b}=\mathrm{e}^{2}$.
16. (d)

Let $f(x)=\ln \frac{x}{4}$
$\lim _{x \rightarrow 4} x f(x)=\lim _{x \rightarrow 4} x \ln \frac{x}{4}=0$
17. (a)

Note that $[x+2]=0$ if $0 \leq x+2<1$
i.e. $[\mathrm{x}+2]=0$ if $-2 \leq \mathrm{x}<-1$.

Thus domain of f is $\mathbf{R}-[-2,-1)$
We have $\sin \left(\frac{\pi}{[\mathrm{x}+2]}\right)$ is continuous at all points of $\mathrm{R}-[-2,-1)$ and $[\mathrm{x}]$ is continuous on $\mathrm{R}-\mathrm{I}$, where I denotes the set of integers.

Thus the points where f can possibly be discontinuous are. \qquad $-3,-2,-1,01,2$, But for $-1 \leq x<0,[x+1]=0$ and $\sin \left(\frac{\pi}{[x+2]}\right)$ is defined.

Therefore $\mathrm{f}(\mathrm{x})=0$ for $-1 \leq \mathrm{x}<0$.
Also $f(x)$ is not defined on $-2 \leq \mathrm{x}<-1$.
Hence set of points of discontinuities of $f(x)$ is $I-\{-1\}$.
18. (b)
$f(x)=\lim _{x \rightarrow 0}\left(\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}\right)=f(0) \quad,\left(\frac{0}{0}\right.$ form $)$
Applying L-Hospital's rule, $f(0)=\lim _{x \rightarrow 0} \frac{\left(2-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)}{\left(2+\frac{1}{1+\mathrm{x}^{2}}\right)}=\frac{2-1}{2+1}=\frac{1}{3}$
19. (d)

For continuity at all $\mathrm{x} \in \mathrm{R}$, we must have
$f\left(-\frac{\pi}{2}\right)=\lim _{x \rightarrow(-\pi / 2)^{-}}(4 \sin x)=\lim _{x \rightarrow(-\pi / 2)^{+}}(a \sin x-b)$
$\Rightarrow 4=-\mathrm{a}-\mathrm{b}$
and $\mathrm{f}\left(\frac{\pi}{2}\right)=\lim _{\mathrm{x} \rightarrow(\pi / 2)^{-}}(\mathrm{a} \sin \mathrm{x}-\mathrm{b})=\mathrm{a}-\mathrm{b}=\lim _{\mathrm{x} \rightarrow(\pi / 2)^{+}}(\cos \mathrm{x})=0$
$\Rightarrow 0=\mathrm{a}-\mathrm{b}$
From (i) and (ii), $\mathrm{a}=-2$ and $\mathrm{b}=-2$.
20. (a)

$$
f(5)=\lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5} \frac{x^{2}-10 x+25}{x^{2}-7 x+10}=\lim _{x \rightarrow 5} \frac{(x-5)^{2}}{(x-2)(x-5)}=\frac{5-5}{5-2}=0 .
$$

21. (c)

For continuity at 0 , we must have $\mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(\mathrm{x})$
$=\lim _{x \rightarrow 0}(x+1)^{\cot x}=\lim _{x \rightarrow 0}\left\{(1+x)^{\frac{1}{x}}\right\}^{x \cot x}=\lim _{x \rightarrow 0}\left\{(1+x)^{\frac{1}{x}}\right\}^{\lim _{x \rightarrow 0}\left(\frac{x}{\tan x}\right)}=e$.
22. (a)

Conceptual question
23. (c)
$f(x)$ is continuous at $x=\frac{\pi}{3}$, then $\lim _{x \rightarrow \pi / 3} f(x)=f(0)$ or
$\lambda=\lim _{x \rightarrow \pi / 3} \frac{1-\sin \frac{3 x}{2}}{\pi-3 x},\left(\frac{0}{0}\right.$ form $)$
Applying L-Hospital's rule, $\lambda=\lim _{x \rightarrow \pi / 3} \frac{-\frac{3}{2} \cos \frac{3 x}{2}}{-3}=0$
24. (d)

If $f(x)$ is continuous at $x=0$ then,
$f(0)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{2-\sqrt{x+4}}{\sin 2 x} \quad,\left(\frac{0}{0}\right.$ form $)$
Using L-Hospital's rule, $f(0)=\lim _{x \rightarrow 0} \frac{\left(-\frac{1}{2 \sqrt{x+4}}\right)}{2 \cos 2 x}=-\frac{1}{8}$.
25. (d)
$x^{2}+2=3 x \Rightarrow x=1,2$
$F(x)$ will be continuous only at $x=1 \& 2$.
26. (b)
$f(x)=\left[x^{2}+e^{\frac{1}{2-x}}\right]^{-1}$ and $f(2)=k$
If $f(x)$ is continuous from right at $x=2$ then $\lim _{x \rightarrow 2^{+}} f(x)=f(2)=k$
$\Rightarrow \lim _{x \rightarrow 2^{+}}\left[x^{2}+e^{\frac{1}{2-x}}\right]^{-1}=k \Rightarrow k=\lim _{h \rightarrow 0} f(2+h) \Rightarrow k=\lim _{h \rightarrow 0}\left[(2+h)^{2}+e^{\frac{1}{2-(2+h)}}\right]^{-1}$
$\Rightarrow \mathrm{k}=\lim _{\mathrm{h} \rightarrow 0}\left[4+\mathrm{h}^{2}+4 \mathrm{~h}+\mathrm{e}^{-1 / \mathrm{h}}\right]^{-1} \Rightarrow \mathrm{k}=\left[4+0+0+\mathrm{e}^{-\infty}\right]^{-1} \Rightarrow \mathrm{k}=\frac{1}{4}$.
27. (c)
$\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} \frac{2 \cos ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}=\lim _{x \rightarrow \pi} \frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}}=\lim _{x \rightarrow \pi} \tan \left(\frac{\pi}{4}-\frac{x}{2}\right)$
\therefore At $\mathrm{x}=\pi, \mathrm{f}(\pi)=-\tan \frac{\pi}{4}=-1$.
28. (c)
L.H.L. $=\lim _{x \rightarrow 0^{-1}} \frac{\sqrt{4+\mathrm{kx}}-\sqrt{4-\mathrm{kx}}}{\mathrm{x}}=\lim _{\mathrm{x} \rightarrow 0^{-1}} \frac{2 \mathrm{kx}}{\mathrm{x}} \times \frac{1}{\sqrt{4+\mathrm{kx}}+\sqrt{4-\mathrm{kx}}}=\frac{\mathrm{k}}{2}$
R.H.L. $=\lim _{x \rightarrow 0^{+}} \frac{2 x^{2}+3 x}{\sin x}=\lim _{x \rightarrow 0^{+}} \frac{x}{\sin x}(2 x+3)=3$

Since it is continuous, hence L.H.L $=$ R.H.L $\Rightarrow k=6$.
29. (c)
$|x|$ is continuous at $x=0$ and $\frac{|x|}{x}$ is discontinuous at $x=0$
$\therefore f(x)=|x|+\frac{|x|}{x}$ is discontinuous at $x=0$.
30. (b)
$\lim _{x \rightarrow 0^{+}} \frac{x\left(e^{x}-1\right)}{|\tan x|}=\lim _{x \rightarrow 0^{+}} \frac{x\left(e^{x}-1\right)}{\tan x}=0$
$\lim _{x \rightarrow 0^{-}} \frac{x\left(e^{x}-1\right)}{|\tan x|}=-\lim _{x \rightarrow 0^{-}} \frac{x\left(e^{x}-1\right)}{\tan x}=0$
So $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.
Now L.H.D. $=\lim _{x \rightarrow 0^{-}} \frac{\frac{x\left(e^{x}-1\right)}{|\tan x|}-0}{x-0}=-\lim _{x \rightarrow 0^{-}} \frac{x}{\tan x} \times \frac{e^{x}-1}{x}=-1$
R.H.D. $=\lim _{x \rightarrow 0^{+}} \frac{\frac{x\left(e^{x}-1\right)}{|\tan x|}-0}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{x}{\tan x} \times \frac{e^{x}-1}{x}=1$
L.H.D. \neq R.H.D.
$\mathrm{F}(\mathrm{x})$ is continuous but not differentiable at $x=0$
31. (a)

We have, $f(x)=\frac{x}{1+|x|}=\left\{\begin{aligned} \frac{x}{1+x} & , \quad x>0 \\ 0 & , \\ \frac{x}{\frac{x}{1-x}} & , \quad x<0\end{aligned}\right.$;
L.H.D. $=\lim _{h \rightarrow 0} \frac{f(-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{\frac{-h}{1+h}-0}{-h}=1$
R.H.D. $=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\frac{\lim _{h \rightarrow 0} \frac{h}{1+h}-0}{h}=\lim _{h \rightarrow 0} \frac{1}{1+h}=1$

So, $f(x)$ is differentiable at $x=0$; Also $f(x)$ is differentiable at all other points.
Hence, $f(x)$ is everywhere differentiable.
32. (b)

Let $f(x)=|x-1|+|x-3|=\left\{\begin{array}{rl}-(x-1)-(x-3) & , \quad x<1 \\ (x-1)-(x-3) & , \quad 1 \leq x<3 \\ (x-1)+(x-3) & , \quad x \geq 3\end{array}=\left\{\begin{aligned}-2 x+4, & x<1 \\ 2, & 1 \leq x<3 \\ 2 x-4 & , \quad x \geq 3\end{aligned}\right.\right.$
Since, $f(x)=2$ for $1 \leq x<3$. Therefore $\mathrm{f}^{\prime}(\mathrm{x})=0$ for all $\mathrm{x} \in(1,3)$.
Hence, $\mathrm{f}^{\prime}(\mathrm{x})=0$ at $\mathrm{x}=2$.
33. (a)

We have, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x \rightarrow 0}\left(\frac{\sin x^{2}}{x^{2}}\right) x=1 \times 0=0=f(0)$
So, $f(x)$ is continuous at $x=0$,
$f(x)$ is also derivable at
$x=0$, because $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}}=1$
exists finitely.
34. (b)

It is evident from the graph of $f(x)=|\log | x| |$ than $f(x)$ is everywhere continuous but not differentiable
 at $\mathrm{x}= \pm 1$.
35. (a)

$$
\mathrm{f}(\mathrm{x})=[\mathrm{x}] \sin (\pi \mathrm{x})
$$

If x is just less than $\mathrm{k},[\mathrm{x}]=\mathrm{k}-1 . \therefore \mathrm{f}(\mathrm{x})=(\mathrm{k}-1) \sin (\pi \mathrm{x})$, when $\mathrm{x}<\mathrm{k} \forall \mathrm{k} \in \mathrm{I}$
Now L.H.D. at $\mathrm{x}=\mathrm{k}$,

$$
=\lim _{x \rightarrow k} \frac{(k-1) \sin (\pi x)-k \sin (\pi k)}{x-k}=\lim _{x \rightarrow k} \frac{(k-1) \sin (\pi x)}{(x-k)} \quad[\text { as } \sin (\pi k)=0 \quad k \in I]
$$

$=\lim _{h \rightarrow 0} \frac{(k-1) \sin (\pi(k-h))}{-h} \quad[$ Let $x=(k-h)]$
$=\lim _{h \rightarrow 0} \frac{(k-1)(-1)^{k-1} \sin h \pi}{-h}$
$=\lim _{\mathrm{h} \rightarrow 0}(\mathrm{k}-1)(-1)^{\mathrm{k}-1} \frac{\sinh \pi}{\mathrm{~h} \pi} \times(-\pi)$
$=(\mathrm{k}-1)(-1)^{\mathrm{k}} \pi=(-1)^{\mathrm{k}}(\mathrm{k}-1) \pi$.
36. (a)

We have, $f(x)=|x|+|x-1|=\left\{\begin{array}{cc}-2 x+1, & x<0 \\ 1, & 0 \leq x<1 \\ 2 x-1, & x \geq 1\end{array}\right.$
Since, $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 1=1, \lim _{x \rightarrow+^{+}} f(x)=\lim _{x \rightarrow l^{+}}(2 x-1)=1$ and $f(1)=2 \times 1-1=1$
$\therefore \lim _{\mathrm{x} \rightarrow \rightarrow^{-}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 1^{+}} \mathrm{f}(\mathrm{x})=\mathrm{f}(1)$. So, $\mathrm{f}(\mathrm{x})$ is continuous at $x=1$.
Now, $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}=\lim _{h \rightarrow 0} \frac{1-1}{-h}=0$ and
$\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{2(1+h)-1-1}{h}=2$.
\therefore (LHD at $\mathrm{x}=1) \neq($ RHD atx $=1)$.
So, $f(x)$ is not differentiable at $x=1$.

Alternately

By graph, it is clear that the function is not differentiable at $x=0,1$ as there it has sharp edges.
37. (c)

Here $f(x)=|x-1|+|x+1| \Rightarrow f(x)=\left\{\begin{aligned} 2 x & , \quad \text { when } x>1 \\ 2, & \text { when }-1 \leq x \leq 1 \\ -2 x & , \text { when } x<-1\end{aligned}\right.$

Alternate

The graph of the function is shown alongside,
From the graph it is clear that the function is continuous at all real x, also differentiable at all real x except at $x= \pm 1$; Since sharp edges at $x=-1$ and $x=1$.
At $x=1$ we see that the slope from the right i.e., R.H.D. $=2$, while slope from the left i.e., L.H.D. $=0$
Similarly, at $x=-1$ it is clear that R.H.D. $=0$ while L.H.D. $=-2$

Here, $\mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{aligned}-2 & , \mathrm{x}<-1 \\ 0 & , \\ 2 & -1<\mathrm{x}<1\end{aligned}\right.$ (No equality on -1 and +1)

Now, at $\mathrm{x}=1, \mathrm{f}^{\prime}\left(1^{+}\right)=2$ while $\mathrm{f}^{\prime}\left(1^{-}\right)=0$ and at $\mathrm{x}=-1, \mathrm{f}^{\prime}\left(-1^{+}\right)=0$ while $\mathrm{f}^{\prime}\left(-1^{-}\right)=-2$
Thus, $f(x)$ is not differentiable at $x= \pm 1$.
38. (d)
$\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-1}}\left(a x^{2}+b x+2\right)=a-b+2$ and
$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}}\left(b x^{2}+a x+4\right)=b-a+4$
For continuity $\mathrm{a}-\mathrm{b}+2=\mathrm{b}-\mathrm{a}+4 \Rightarrow \mathrm{a}-\mathrm{b}=1$...
Now $\mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{array}{ll}2 \mathrm{ax}+\mathrm{b} & , \quad \mathrm{x}<-1 \\ 2 \mathrm{bx}+\mathrm{a} & , \\ \mathrm{x}>-1\end{array} \Rightarrow\right.$ R.H.D. $=-2 \mathrm{a}+\mathrm{b} \&$ L.H.D. $=-2 \mathrm{~b}+\mathrm{a}$
For differentiability $-2 \mathrm{a}+\mathrm{b}=-2 \mathrm{~b}+\mathrm{a} \Rightarrow \mathrm{a}=\mathrm{b}$.
From (i) \& (ii) no value of (a, b) is possible.
39. (b)
$h(x)=e^{(f(x))^{3}+(g(x))^{3}+x} \Rightarrow h^{\prime}(x)=e^{(f(x))^{3}+(g(x))^{3}+x}\left(3(f(x))^{2} f^{\prime}(x)+3(g(x))^{2} g^{\prime}(x)+1\right)$
$\Rightarrow \mathrm{h}^{\prime}(\mathrm{x})=\mathrm{h}(\mathrm{x})\left(3(\mathrm{f}(\mathrm{x}))^{2} \frac{\mathrm{~g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}-3(\mathrm{~g}(\mathrm{x}))^{2} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+1\right)$
$\Rightarrow h^{\prime}(\mathrm{x})=\mathrm{h}(\mathrm{x}) \Rightarrow \mathrm{h}(\mathrm{x})=\mathrm{e}^{\mathrm{x}+\mathrm{c}}$
Now $h(5)=e^{6} \Rightarrow h(x)=e^{x+1}$
Hence $h(10)=\mathrm{e}^{11}$
40. (c)
$[2+h]=2,[2-h]=1,[1+h]=1,[1-h]=0$
At $x=2$, we will check $\mathrm{RHL}=\mathrm{LHL}=\mathrm{f}(2)$
$\mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0}|4+2 \mathrm{~h}-3|[2+\mathrm{h}]=2, \mathrm{f}(2)=1.2=2$
$\mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0}|4-2 \mathrm{~h}-3|[2-\mathrm{h}]=1, \mathrm{R} \neq \mathrm{L}, \therefore$ not continuous
At $\mathrm{x}=1, \mathrm{RHL}=\lim |2+2 \mathrm{~h}-3|[1+\mathrm{h}]=1.1=1$,
$\mathrm{f}(1)=|-1|[1]=1$
LHL $=\lim _{\mathrm{h} \rightarrow 0} \sin \frac{\pi}{2}(1-\mathrm{h})=1$
continuous at $\mathrm{x}=1$
R.H.D. $=\lim _{h \rightarrow 0} \frac{|2+2 h-3|[1+h]-1}{h}=\lim _{h \rightarrow 0} \frac{|-1| \cdot 1-1}{h}=\lim _{h \rightarrow 0} \frac{1-1}{h}=0$
L.H.D. $=\lim _{h \rightarrow 0} \frac{|2-2 h-3|[1-h]-1}{-h}=\lim _{h \rightarrow 0} \frac{1.0-1}{-h}=\lim _{h \rightarrow 0} \frac{1}{h}=\infty$

Since R.H.D. \neq L.H.D. \therefore not differentiable. at $\mathrm{x}=1$.
41. (b)

Clearly, $\mathrm{f}(\mathrm{x})$ is differentiable for all non-zero values of x,
For $\mathrm{x} \neq 0$, we have $\mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{xe}^{-\mathrm{x}^{2}}}{\sqrt{1-\mathrm{e}^{-\mathrm{x}^{2}}}}$
Now, (L.H.D. at $x=0$)
$=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{\sqrt{1-\mathrm{e}^{-\mathrm{h}^{2}}}}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0}-\frac{\sqrt{1-\mathrm{e}^{-\mathrm{h}^{2}}}}{\mathrm{~h}}$
$=-\lim _{\mathrm{h} \rightarrow 0} \sqrt{\frac{\mathrm{e}^{\mathrm{h} 2}-1}{\mathrm{~h}^{2}}} \times \frac{1}{\sqrt{\mathrm{e}^{\mathrm{h}^{2}}}}=-1$
and, (RHD at $x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{\mathrm{h} \rightarrow 0} \frac{\sqrt{1-\mathrm{e}^{-\mathrm{h}^{2}}}-0}{\mathrm{~h}}$
$=\lim _{\mathrm{h} \rightarrow 0} \sqrt{\frac{\mathrm{e}^{\mathrm{h}^{2}}-1}{\mathrm{~h}^{2}}} \times \frac{1}{\sqrt{\mathrm{e}^{\mathrm{h}^{2}}}}=1$.
So, $f(x)$ is not differentiable at $\mathrm{x}=0$,
Hence, the points of differentiability of $f(x)$ are $(-\infty, 0) \cup(0, \infty)$
42. (a)

We have, $f(x)=\left\{\begin{array}{l}\mathrm{e}^{\sin x},-\frac{\pi}{2} \leq x<0 \\ \mathrm{e}^{-\sin x}, 0 \leq x \leq \frac{\pi}{2}\end{array}\right.$
Clearly, $f(x)$ is continuous and differentiable for all non-zero x.
Now, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} e^{\sin x}=1$ and $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} e^{-\sin x}=1$
Also, $f(0)=e^{0}=1$
So, $\mathrm{f}(\mathrm{x})$ is continuous for all x.
$($ LHD at $x=0)=\left(\frac{d}{d x}\left(e^{x}\right)\right)_{x=0}=\left(e^{x}\right)_{x=0}=e^{0}=1$
(RHD at $x=0)=\left(\frac{d}{d x}\left(e^{-x}\right)\right)_{x=0}=\left(-e^{-x}\right)_{x=0}=-1$
So, $f(x)$ is not differentiable at $x=0$.
43. (b)

We have, $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$. The domain of definition of $f(x)$ is $[-1,1]$.
For $\mathrm{x} \neq 0, \mathrm{x} \neq 1, \quad \mathrm{x} \neq-1 \quad$ we have $\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\sqrt{1-\sqrt{1-\mathrm{x}^{2}}}} \times \frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}$
Since $f(x)$ is not defined on the right side of $x=1$ and on the left side of $x=-1$.
Also, $\mathrm{f}^{\prime}(\mathrm{x}) \rightarrow \infty$ when $\mathrm{x} \rightarrow-1^{+}$or $\mathrm{x} \rightarrow 1^{-}$.

So, we check the differentiability at $x=0$.
Now, (LHD at $x=0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{\sqrt{1-\sqrt{1-\mathrm{h}^{2}}}-0}{-\mathrm{h}}=-\lim _{\mathrm{h} \rightarrow 0} \frac{\sqrt{1-\left\{1-(1 / 2) \mathrm{h}^{2}+(3 / 8) \mathrm{h}^{4}+\ldots .\right\}}}{\mathrm{h}}$
$=-\lim _{h \rightarrow 0} \sqrt{\frac{1}{2}-\frac{3}{8} h^{2}+\ldots . .}=-\frac{1}{\sqrt{2}}$
Similarly, $($ RHD at $x=0)=\frac{1}{\sqrt{2}}$
Hence, $\mathrm{f}(\mathrm{x})$ is not differentiable at $x=0$.
44. (d) Since $f(x)$ is differentiable at $x=c$, therefore it is continuous at $x=c$.

Hence, $\lim _{x \rightarrow c} f(x)=f(c)$.
45. (c)
$\left(x^{2}-3 x+2\right)=(x-1)(x-2)>0$ When $x<1$ or >2,
And $\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)=(\mathrm{x}-1)(\mathrm{x}-2)<0$ when $1 \leq x \leq 2$
Also $\cos |x|=\cos x$
$\therefore \quad \mathrm{f}(\mathrm{x})=-\left(\mathrm{x}^{2}-4\right)\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)+\cos \mathrm{x}, 1 \leq \mathrm{x} \leq 2$
and $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}-4\right)\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)+\cos \mathrm{x}, \mathrm{x}<1$ or $\mathrm{x}>2$
Evidently $f(x)$ is not differentiable at $\mathrm{x}=1$.
46. (b)
$f(0)=0$ and $f(x)=x^{2} e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)}$
R.H.L. $=\lim _{h \rightarrow 0}(0+h)^{2} e^{-2 / h}=\lim _{h \rightarrow 0} \frac{h^{2}}{e^{2 / h}}=0$
L.H.L. $=\lim _{h \rightarrow 0}(0-h)^{2} \mathrm{e}^{-\left(\frac{1}{h}-\frac{1}{h}\right)}=0$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.
R.H.D. at $(x=0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} e^{-2 / h}}{h}=h e^{-2 / h}=0$
L.H.D. at $(x=0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{h^{2} e^{-\left(\frac{1}{h}-\frac{1}{h}\right)}}{-h}=\lim _{h \rightarrow 0}(-h)=0$
$\mathrm{F}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$
47. (d)
$\lim _{x \rightarrow 0} f(x)=x^{3} \sin ^{2}\left(\frac{1}{x}\right)=0$ as $0 \leq \sin ^{2}\left(\frac{1}{x}\right) \leq 1$ and $x \rightarrow 0$
Therefore $f(x)$ is continuous at $x=0$.
Also, the function $f(x)=x^{3} \sin ^{2} \frac{1}{x}$ is differentiable because
RHD $=\lim _{h \rightarrow 0} \frac{h^{3} \sin ^{2} \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} h^{2} \sin ^{2} \frac{1}{h}=0, L H D=\lim _{h \rightarrow 0} \frac{h^{3} \sin \left(\frac{1}{-h}\right)}{-h}=0$.
48. (b)
49. (d)
50. (c)
$\lim _{h \rightarrow 0^{-}} 1+(2-h)=3, \lim _{h \rightarrow 0^{+}} 5-(2+h)=3, f(2)=3$
Hence, f is continuous at $\mathrm{x}=2$
Now RHD $=\lim _{h \rightarrow 0} \frac{5-(2+h)-3}{h}=-1$
$\mathrm{LHD}=\lim _{\mathrm{h} \rightarrow 0} \frac{1+(2-\mathrm{h})-3}{-\mathrm{h}}=1$
$\therefore \mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=2$.
51. (c)
$\mathrm{g}(\mathrm{x})=|\mathrm{f}(|\mathrm{x}|)| \geq 0$. So $g(x)$ cannot be onto.
If $f(x)$ is one-one and $f\left(x_{1}\right)=-f\left(x_{2}\right)$ then $g\left(x_{1}\right)=g\left(x_{2}\right)$.
So, ' $f(x)$ is one-one' does not ensure that $g(x)$ is one-one.
If $f(x)$ is continuous for $x \in R,|f(|x|)|$ is also continuous for $x \in R$.
So the answer (c) is correct.
The fourth answer (d) is not correct as $f(x)$ being differentiable does not ensure $|f(x)|$ being differentiable.
52. (b)

Given $f(4)=6, f^{\prime}(4)=1$
$\therefore \lim _{x \rightarrow 4} \frac{x f(4)-4 f(x)}{x-4}=\lim _{x \rightarrow 4} \frac{x f(4)-4 f(4)+4 f(4)-4 f(x)}{x-4}$
$=\lim _{x \rightarrow 4} \frac{(x-4) f(4)}{x-4}-4 \lim _{x \rightarrow 2} \frac{f(x)-f(4)}{x-4}$
$=f(4)-2 f^{\prime}(4)=4$
53. (c)
$\mathrm{f}(\mathrm{x}+2 \mathrm{y})=2 \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \Rightarrow 2 \mathrm{f}^{\prime}(\mathrm{x}+2 \mathrm{y})=2 \mathrm{f}(\mathrm{x}) \mathrm{f}^{\prime}(\mathrm{y})\{$ partially differentiating w.r.to y$\}$
For $x=5 \& y=0, f^{\prime}(5)=f(5) f^{\prime}(0) \Rightarrow f^{\prime}(5)=6$
54. (c)

By L'hospital's rule

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{g^{2}(x) f^{2}(2)-f^{2}(x) g^{2}(2)}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{g(x) g^{\prime}(x) f^{2}(2)-f(x) f^{\prime}(x) g^{2}(2)}{x} \\
& =\frac{(-1) \times 4 \times 9-3 \times(-2) \times 1}{2}=-15
\end{aligned}
$$

55. (b)

Given $5 f(2 x)+3 f\left(\frac{2}{x}\right)=2 x+2$
Replacing x by $\frac{1}{x}$ in (i), $5 \mathrm{f}\left(\frac{2}{\mathrm{x}}\right)+3 \mathrm{f}(2 \mathrm{x})=\frac{2}{\mathrm{x}}+2$
On solving equation (i) and (ii), we get, $8 \mathrm{f}(2 \mathrm{x})=5 \mathrm{x}-\frac{3}{\mathrm{x}}+2$,
$\Rightarrow 8 f(x)=\frac{5 x}{2}-\frac{6}{x}+2$
$\therefore 8 \mathrm{f}^{\prime}(\mathrm{x})=\frac{5}{2}+\frac{6}{\mathrm{x}^{2}}$
$\because y=x f(x) \Rightarrow \frac{d y}{d x}=f(x)+f^{\prime}(x)$
$=\frac{1}{8}\left(\frac{5 x}{2}-\frac{6}{x}+2\right)+\frac{x}{8}\left(\frac{5}{2}+\frac{6}{\mathrm{x}^{2}}\right)$
at $\mathrm{x}=1, \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{8}\left(\frac{5}{2}-6+2\right)+\frac{1}{8}\left(\frac{5}{2}+6\right)=\frac{7}{8}$
56. (d)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
x^{3}-1, & x \geq 1 \\
1-x^{3}, & x<1
\end{array} \text { and } f^{\prime}(x)=\left\{\begin{array}{ccc}
3 x^{2} & , & x \geq 1 \\
-3 x^{2} & , & x<1
\end{array}\right.\right. \\
& f^{\prime}\left(1^{+}\right)=3, f^{\prime}\left(1^{-}\right)=-3
\end{aligned}
$$

57. (b)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\sin 2 \mathrm{x} \cdot \cos 2 \mathrm{x} \cdot \cos 3 \mathrm{x}+\log _{2} \mathrm{e}^{\mathrm{x}+3} \\
& \Rightarrow \mathrm{f}(\mathrm{x})=\frac{1}{2} \sin 4 \mathrm{x} \cos 3 \mathrm{x}+(\mathrm{x}+3) \log _{2} 2 \\
& \Rightarrow \mathrm{f}(\mathrm{x})=\frac{1}{4}[\sin 7 \mathrm{x}+\sin \mathrm{x}]+\mathrm{x}+3
\end{aligned}
$$

Differentiate w.r.t. x,

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{4}[7 \cos 7 \mathrm{x}+\cos \mathrm{x}]+1 \\
& \Rightarrow \mathrm{f}^{\prime}(\pi)=-2+1=-1
\end{aligned}
$$

58. (b) In neighborhood of $x=\frac{3 \pi}{4},\left|\cos ^{3} x\right|=-\cos ^{3} x$ and $\left|\sin ^{3} x\right|=\sin ^{3} x$
$\therefore \mathrm{y}=-\cos ^{3} \mathrm{x}+\sin ^{3} \mathrm{x}$
$\therefore \frac{d y}{d x}=3 \cos ^{2} \mathrm{x} \sin \mathrm{x}+3 \sin ^{2} \mathrm{x} \cos \mathrm{x}$
At $x=\frac{3 \pi}{4}, \frac{d y}{d x}=3 \cos ^{2} \frac{3 \pi}{4} \sin \frac{3 \pi}{4}+3 \sin ^{2} \frac{3 \pi}{4} \cos \frac{3 \pi}{4}=0$.
59. (b)
$f(x)=\log _{x}(\log x)=\frac{\log (\log x)}{\log x}$
$\Rightarrow f^{\prime}(x)=\frac{\frac{1}{x}-\frac{1}{x} \log (\log x)}{(\log x)^{2}}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{\frac{1}{\mathrm{e}}-0}{1}=\frac{1}{\mathrm{e}}$
60. (d)
$f(x)=|\log x|=\left\{\begin{array}{cc}-\log x, & \text { if } 0<x<1 \\ \log x, & \text { if } x \geq 1\end{array}\right.$
$\Rightarrow f^{\prime}(\mathrm{x})=\left\{\begin{array}{cl}-\frac{1}{\mathrm{x}}, & \text { if } 0<\mathrm{x}<1 \\ \frac{1}{\mathrm{x}}, & \text { if } \mathrm{x}>1\end{array}\right.$.
Clearly $\mathrm{f}^{\prime}\left(1^{-}\right)=-1$ and $\mathrm{f}^{\prime}\left(1^{+}\right)=1$,
$\therefore \mathrm{f}^{\prime}(\mathrm{x})$ does not exist at $\mathrm{x}=1$
61. (c)

Let $y=\left[\log \left\{e^{x}\left(\frac{x-1}{x+1}\right)\right\}\right]=\log e^{x}+\log \left(\frac{x-1}{x+1}\right)$
$\Rightarrow \mathrm{y}=\mathrm{x}+[\log (\mathrm{x}-1)-\log (\mathrm{x}+1)]$
$\Rightarrow \frac{d y}{d x}=1+\left[\frac{1}{x-1}-\frac{1}{x+1}\right]=1+\frac{2}{\left(x^{2}-1\right)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}^{2}+1}{\mathrm{x}^{2}-1}$.
62. (a)
$\mathrm{x}=\exp \left\{\tan ^{-1}\left(\frac{\mathrm{y}-\mathrm{x}}{\mathrm{x}}\right)\right\} \Rightarrow \log \mathrm{x}=\tan ^{-1}\left(\frac{\mathrm{y}-\mathrm{x}}{\mathrm{x}}\right)$
$\Rightarrow \frac{y-x}{x}=\tan (\log x) \Rightarrow y=x \tan (\log x)+x$
$\Rightarrow \frac{d y}{d x}=\tan (\log x)+x \frac{\sec ^{2}(\log x)}{x}+1$
$\Rightarrow \frac{d y}{d x}=\tan (\log x)+\sec ^{2}(\log x)+1$
At $\mathrm{x}=1, \frac{\mathrm{dy}}{\mathrm{dx}}=2$.
63. (a)

$$
\begin{aligned}
& y=\sec ^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)+\sin ^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) \\
& =\cos ^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)+\sin ^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)=\frac{\pi}{2} \\
& \Rightarrow \frac{d y}{d x}=0
\end{aligned}
$$

64. (d)

$$
\frac{d}{d x} \tan ^{-1}\left[\frac{\cos x-\sin x}{\cos x+\sin x}\right]=\frac{d}{d x} \tan ^{-1}\left[\tan \left(\frac{\pi}{4}-x\right)\right]=-1 .
$$

65. (b)

Let $y=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right)$
Put $x=\cos \theta \Rightarrow \theta=\cos ^{-1} x$
$\Rightarrow \mathrm{y}=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\right)=\sin ^{2}\left(\cot ^{-1}\left(\tan \frac{\theta}{2}\right)\right)$
$\Rightarrow \mathrm{y}=\sin ^{2}\left(\frac{\pi}{2}-\frac{\theta}{2}\right)=\cos ^{2} \frac{\theta}{2}=\frac{1}{2}(1+\cos \theta)=\frac{1}{2}(1+\mathrm{x})$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}$
66. (a)

Let $\cos \alpha=\frac{5}{13}$. Then $\sin \alpha=\frac{12}{13}$. So, $y=\cos ^{-1}\{\cos \alpha \cdot \cos x-\sin \alpha \cdot \sin x\}$
$\therefore \mathrm{y}=\cos ^{-1}\{\cos (\mathrm{x}+\alpha)\}=\mathrm{x}+\alpha(\because \mathrm{x}+\alpha$ is in the first or the second quadrant $)$ $\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=1$.
67. (c)
$y\left(\frac{\tan ^{2} 2 x-\tan ^{2} x}{1-\tan ^{2} 2 x \tan ^{2} x}\right) \cot 3 x=\left(\frac{\tan 2 x-\tan x}{1+\tan 2 x \tan x}\right)\left(\frac{\tan 2 x+\tan x}{1-\tan 2 x \tan x}\right) \cot 3 x$
$\Rightarrow y=\tan x \tan 3 x \cot 3 x=\tan x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\sec ^{2} \mathrm{x}$
68. (a)
$f(x)=\cot ^{-1}\left(\frac{x^{x}-x^{-x}}{2}\right)$
Put $\mathrm{x}^{\mathrm{x}}=\tan \theta, \quad \therefore \mathrm{y}=\mathrm{f}(\mathrm{x})=\cot ^{-1}\left(\frac{\tan ^{2} \theta-1}{2 \tan \theta}\right)$
$=\cot ^{-1}(-\cot 2 \theta)=\pi-\cot ^{-1}(\cot 2 \theta)$
$\Rightarrow y=\pi-2 \theta=\pi-2 \tan ^{-1}\left(\mathrm{x}^{\mathrm{x}}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2}{1+\mathrm{x}^{2 \mathrm{x}}} \cdot \mathrm{x}^{\mathrm{x}}(1+\log \mathrm{x}) \\
& \Rightarrow \mathrm{f}^{\prime}(1)=-1 .
\end{aligned}
$$

69. (a)

$$
\begin{aligned}
& y=\frac{(1-x)(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)}{1-x}=\frac{1-x^{16}}{1-x} \\
& \therefore \frac{d y}{d x}=\frac{-16 x^{15}(1-x)+1-x^{16}}{(1-x)^{2}}, \therefore \text { At } x=0, \frac{d y}{d x}=1 .
\end{aligned}
$$

70. (c)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\frac{2 \sin \mathrm{x} \cdot \cos \mathrm{x} \cdot \cos 2 \mathrm{x} \cdot \cos 4 \mathrm{x}}{2 \sin \mathrm{x}}=\frac{\sin 8 \mathrm{x}}{8 \sin \mathrm{x}} \\
& \therefore \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{8} \cdot \frac{8 \cos 8 \mathrm{x} \cdot \sin \mathrm{x}-\cos \mathrm{x} \cdot \sin 8 \mathrm{x}}{\sin ^{2} \mathrm{x}} \\
& \therefore \mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)=0 .
\end{aligned}
$$

71. (a)

$$
x e^{x+y}=y+2 \sin x \Rightarrow e^{x+y}+x e^{x+y}\left(1+y^{\prime}\right)=y^{\prime}+2 \cos x
$$

Now $\mathrm{x}=0$ gives $\mathrm{y}=0$, hence $\frac{\mathrm{dy}}{\mathrm{dx}}=-1$.
72. (a)

$$
\begin{aligned}
& \sin (3 x-2 y)=\log (3 x-2 y) \Rightarrow\left(3-2 \frac{d y}{d x}\right) \cos (3 x-2 y)=\left(3-2 \frac{d y}{d x}\right) \frac{1}{3 x-2 y} \\
& \Rightarrow \frac{d y}{d x}=\frac{3}{2}
\end{aligned}
$$

73. (c)

$$
\begin{aligned}
& x^{4} y^{5}=2(x+y)^{9} \Rightarrow 4 x^{3} y^{5}+5 x^{4} y^{4} \frac{d y}{d x}=18(x+y)^{8}\left(1+\frac{d y}{d x}\right) \\
& \Rightarrow 4 \frac{2(x+y)^{9}}{x}+5 \frac{2(x+y)^{9}}{y} \frac{d y}{d x}=18(x+y)^{8}\left(1+\frac{d y}{d x}\right) \\
& \Rightarrow \frac{4}{x}-\frac{9}{x+y}=\left(\frac{9}{x+y}-\frac{5}{y}\right) \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{x}
\end{aligned}
$$

74. (b)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{\mathrm{a}[\cos \theta-\theta(-\sin \theta)-\cos \theta]}{\mathrm{a}[-\sin \theta+\theta \cos \theta+\sin \theta]}=\frac{\theta \sin \theta}{\theta \cos \theta}=\tan \theta .
\end{aligned}
$$

75. (d)

Obviously $x=\cos ^{-1} \frac{1}{\sqrt{1+\mathrm{t}^{2}}}$ and $\mathrm{y}=\sin ^{-1} \frac{\mathrm{t}}{\sqrt{1+\mathrm{t}^{2}}}$
$\Rightarrow \mathrm{x}=\tan ^{-1} \mathrm{t}$ and $\mathrm{y}=\tan ^{-1} \mathrm{t}$
$\Rightarrow \mathrm{y}=\mathrm{x} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1$.
76. (c)
$\mathrm{x}=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}$ and $\mathrm{y}=\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}$
Put $t=\tan \theta$ in both the equations to get
$x=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$ and $y=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$.
Differentiating both the equations, we get $\frac{d x}{d \theta}=-2 \sin 2 \theta$ and $\frac{d y}{d \theta}=2 \cos 2 \theta$.
Therefore $\frac{d y}{d x}=-\frac{\cos 2 \theta}{\sin 2 \theta}=-\frac{x}{y}$.
77. (d)

$$
\begin{aligned}
& y=\sqrt{x+1+\sqrt{x+1+\sqrt{x+1 \ldots . . t o ~} \infty}} \Rightarrow y=\sqrt{x+1+y} \\
& \Rightarrow y^{2}=x+y+1 \Rightarrow 2 y \frac{d y}{d x}=1+\frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}(2 y-1)=1 \Rightarrow \frac{d y}{d x}=\frac{1}{2 y-1}
\end{aligned}
$$

78. (b)

$$
\begin{aligned}
& y=(x+1)^{(x+1)^{(x+1)]}} \Rightarrow y=(x+1)^{y} \\
& \Rightarrow \log _{\mathrm{e}} \mathrm{y}=\mathrm{y} \log _{\mathrm{e}}(\mathrm{x}+1) \\
& \Rightarrow \frac{1}{\mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}}{(\mathrm{x}+1)}+\ln (\mathrm{x}+1) \frac{\mathrm{dy}}{\mathrm{dx}} \\
& \Rightarrow\left(\frac{1}{\mathrm{y}}-\ln (\mathrm{x}+1)\right) \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}}{\mathrm{x}+1} \\
& \Rightarrow(\mathrm{x}+1)(1-\ln \mathrm{y}) \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y}^{2}
\end{aligned}
$$

79. (a)

$$
\begin{aligned}
& y=x^{2}+\frac{2}{y} \Rightarrow y^{2}=x^{2} y+2 \\
& \Rightarrow 2 y \frac{d y}{d x}=y \cdot 2 x+x^{2} \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{2 x y}{2 y-x^{2}}
\end{aligned}
$$

80. (c)
$\mathrm{x}=\mathrm{e}^{2 y+x}$
Taking \log both sides, $\log \mathrm{x}=(2 \mathrm{y}+\mathrm{x}) \log \mathrm{e}=2 \mathrm{y}+\mathrm{x}$
$\Rightarrow 2 y+x=\log x \Rightarrow 2 \frac{d y}{d x}+1=\frac{1}{x} \Rightarrow \frac{d y}{d x}=\frac{1-x}{2 x}$

CONTINUITY \& DIFFERENTIABILITY
 EXERCISE 2(A)

More than one options may be correct

Q. 1 If $f(x)=\left\{\begin{array}{ll}\frac{x \cdot \ln (\cos x)}{\ln \left(1+x^{2}\right)} & x \neq 0 \\ 0 & x=0\end{array}\right.$ then :
(A) f is continuous at $\mathrm{x}=0$
(B) f is continuous at $\mathrm{x}=0$ but not differentiable at $\mathrm{x}=0$
(C) f is differentiable at $\mathrm{x}=0$
(D) f is not continuous at $\mathrm{x}=0$

Sol. [A, C]
$\Rightarrow f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{h \ln (\cos h)}{h \ln \left(1+h^{2}\right)}=\lim _{h \rightarrow 0} \frac{\ln (\cosh)^{\frac{1}{h^{2}}}}{\frac{\ln \left(1+h^{2}\right)}{h^{2}}}$
$\Rightarrow \lim _{\mathrm{h} \rightarrow 0} \frac{1}{\mathrm{~h}^{2}}(\cos \mathrm{~h}-1)=-\frac{1}{2}$
\Rightarrow Paralally $\mathrm{f}^{\prime}\left(0^{-}\right)=-\frac{1}{2}$
Hence f is continuous and derivable at $\mathrm{x}=0$
Q. 2 Given that the derivative f^{\prime} (a) exists. Indicate which of the following statement(s) is/are always true.
(A) $f^{\prime}(x)=\lim _{h \rightarrow a} \frac{f(h)-f(a)}{h-a}$
(B) $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}$
(C) $f^{\prime}(a)=\lim _{t \rightarrow 0} \frac{f(a+2 t)-f(a)}{t}$
(D) $\mathrm{f}^{\prime}(\mathrm{a})=\lim _{\mathrm{t} \rightarrow 0} \frac{\mathrm{f}(\mathrm{a}+2 \mathrm{t})-\mathrm{f}(\mathrm{a}+\mathrm{t})}{2 \mathrm{t}}$

Sol. [A, B]

$\Rightarrow(C)$ is false and is True only if $f^{\prime}(a)=0$ limit is $2 f^{\prime}(a)$. In (D) same logic limit is $\frac{1}{2} f^{\prime}(a)$
Q. 3 Let $[x]$ denote the greatest integer less than or equal to x. If $f(x)=[x \sin \pi x]$, then $f(x)$ is:
(A) continuous at $\mathrm{x}=0$
(B) continuous in $(-1,0)$
(C) differentiable at $\mathrm{x}=1$
(D) differentiable in $(-1,1)$

Sol. [A, B, D]
$\Rightarrow \mathrm{f}(\mathrm{x})=\left[\begin{array}{cc}0 & 0<\mathrm{x}<1 \\ 0 & \mathrm{x}=0 \text { or } 1 \text { or }-1 \\ 0 & -1<\mathrm{x}<0\end{array}\right.$
$\Rightarrow \mathrm{f}(\mathrm{x})=0$ for all in $[-1,1]$
Q. 4 The function, $f(x)=[|x|]-|[x]|$ where $[x]$ denotes greatest integer function
(A) is continuous for all positive integers
(B) is continuous for all non positive integers
(C) has finite number of elements in its range
(D) is such that its graph does not lie above the $\mathrm{x}-$ axis.

Sol. [A, B, C, D]

$\Rightarrow[|\mathrm{x}|]-|[\mathrm{x}]|=\left[\begin{array}{cc}0 & \mathrm{x}=-1 \\ -1 & -1<\mathrm{x}<0 \\ 0 & 0 \leq \mathrm{x} \leq 1 \\ 0 & 1<\mathrm{x} \leq 2\end{array}\right.$
\Rightarrow range is $\{0,-1\}$
The graph is

Q. $5 \operatorname{Let} f(x+y)=f(x)+f(y)$ for all $x, y \in R$. Then:
(A) f (x) must be continuous $\forall \mathrm{x} \in \mathrm{R}$
(B) f (x) may be continuous $\forall \mathrm{x} \in \mathrm{R}$
(C) f (x) must be discontinuous $\forall \mathrm{x} \in \mathrm{R}$
(D) f (x) may be discontinuous $\forall \mathrm{x} \in \mathrm{R}$

Sol. [B, D]

$\Rightarrow \operatorname{limit}_{\mathrm{h} \rightarrow 0} \mathrm{f}(\mathrm{x}+\mathrm{h})=\operatorname{limit}_{\mathrm{h} \rightarrow 0} \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{h})$
$\Rightarrow \mathrm{f}(\mathrm{x})+\operatorname{limitf}_{\mathrm{h} \rightarrow 0}(\mathrm{~h})$
Hence if $h \rightarrow 0$
$\Rightarrow \mathrm{f}(\mathrm{h})=0$
\Rightarrow ' f ' is continuous otherwise discontinuous
Q. 6 The function $\mathrm{f}(\mathrm{x})=\sqrt{1-\sqrt{1-\mathrm{x}^{2}}}$
(A) has its domain $-1 \leq x \leq 1$.
(B) has finite one sided derivates at the point $\mathrm{x}=0$.
(C) is continuous and differentiable at $\mathrm{x}=0$.
(D) is continuous but not differentiable at $\mathrm{x}=0$.

Sol. [A, B, D]

$\Rightarrow \mathrm{f}^{\prime}\left(0^{+}\right)=\frac{1}{\sqrt{2}} ; \mathrm{f}^{\prime}\left(0^{-}\right)=-\frac{1}{\sqrt{2}} ; \mathrm{f}(\mathrm{x})=\frac{\sqrt{\mathrm{x}^{2}}}{\sqrt{1+\sqrt{1-\mathrm{x}^{2}}}}=\frac{|\mathrm{x}|}{\sqrt{1+\sqrt{1-\mathrm{x}^{2}}}}$
Q. 7 Consider the function $f(x)=\left|\mathrm{x}^{3}+1\right|$ then
(A) Domain of $f x \in R$
(B) Range of f is R^{+}
(C)f has no inverse.
(D)f is continuous and differentiable for every $x \in R$.

Sol. [A, C]

Range is $R^{+} \cup\{0\} \Rightarrow B$ is not correct
f is not differentiable at $\mathrm{x}=-1$
\Rightarrow as $\mathrm{f}(\mathrm{x})=\left[\begin{array}{cc}\mathrm{x}^{3}+1 & \text { if } \mathrm{x} \geq-1 \\ -\left(\mathrm{x}^{3}+1\right) & \text { if } \mathrm{x}<-1\end{array}\right.$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\left[\begin{array}{cc}3 \mathrm{x}^{2} & \text { if } \mathrm{x}>-1 \\ -3 \mathrm{x}^{2} & \text { if } \mathrm{x}<-1\end{array}\right.$
$\Rightarrow \mathrm{f}^{\prime}\left(-1^{+}\right)=3 ;$
$\Rightarrow \mathrm{f}^{\prime}\left(-1^{-}\right)=-3$
f is not differentiable at $\mathrm{x}=-1$
also since f is not bijective hence it has no inverse
Q. 8 Let $f(x)=\frac{\sqrt{x-2 \sqrt{x-1}}}{\sqrt{x-1}-1} . x$ then:
(A) $f^{\prime}(10)=1$
(B) $\mathrm{f}^{\prime}\left(\frac{3}{2}\right)=-1$
(C) domain of $f(x)$ is $x \geq 1$
(D) none

Sol. [A, B]
$\Rightarrow f(x)=\frac{\sqrt{(\sqrt{x-1})^{2}+1-2 \sqrt{x-1}}}{\sqrt{x-1}-1} \cdot x=\frac{|\sqrt{x-1}-1|}{\sqrt{x-1}-1} \cdot x=\left[\begin{array}{cc}-x & \text { if } x \in[1,2) \\ x & \text { if } x \in(2, \infty)\end{array}\right]$
Q. 9 f is a continuous function in [a,b]; g is a continuous function in [b, c] A function $h(x)$ is defined as

$$
\begin{aligned}
h(x) & =f(x) & & \text { for } x \in[a, b) \\
& =g(x) & & \text { for } x \in(b, c]
\end{aligned}
$$

If $\quad \mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})$, then
(A) h (x) has a removable discontinuity at $x=b$.
(B) $h(x)$ may or may not be continuous in [a, c]
(C) $h\left(b^{-}\right)=g\left(b^{+}\right)$and $h\left(b^{+}\right)=f\left(b^{-}\right)$
(D) $h\left(b^{+}\right)=g\left(b^{-}\right)$and $h\left(b^{-}\right)=f\left(b^{+}\right)$

Sol. [A, C]
Given f is continuous in [b, c]
g is continuous in $[\mathrm{b}, \mathrm{c}]$
$\mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})$
$\Rightarrow \mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x})$
$=\mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})$
for $x \in[a, b)$
$=\mathrm{g}(\mathrm{x})$
for $x=b$
$\Rightarrow \mathrm{h}(\mathrm{x})$ is continuous in $[\mathrm{a}, \mathrm{b}) \cup(\mathrm{b}, \mathrm{c}] \quad[$ using (1), (2)]
also $f\left(b^{-}\right)=f(b) ; g\left(b^{+}\right)=g(b)$ \qquad
$\Rightarrow \therefore \mathrm{h}\left(\mathrm{b}^{-}\right)=\mathrm{f}\left(\mathrm{b}^{-}\right)=\mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})=\mathrm{g}\left(\mathrm{b}^{+}\right)=\mathrm{h}\left(\mathrm{b}^{+}\right)$
\Rightarrow now, verify each alternative. Of course! $\mathrm{g}\left(\mathrm{b}^{-}\right)$and $\mathrm{f}\left(\mathrm{b}^{+}\right)$are undefined.
$\mathrm{h}\left(\mathrm{b}^{-}\right)=\mathrm{f}\left(\mathrm{b}^{-}\right)=\mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})=\mathrm{g}\left(\mathrm{b}^{+}\right)$
\Rightarrow and $\quad h\left(b^{+}\right)=g\left(b^{+}\right)=g(b)=f(b)=f\left(b^{-}\right)$
\Rightarrow hence $\mathrm{h}\left(\mathrm{b}^{-}\right)=\mathrm{h}\left(\mathrm{b}^{+}\right)=\mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})$
\Rightarrow and $\mathrm{h}(\mathrm{b})$ is not defined
Q. 10 The function $f(x)=\left[\begin{array}{cl}|x-3| \\ \left(\frac{x^{2}}{4}\right)-\left(\frac{3 x}{2}\right)+\left(\frac{13}{4}\right), & , x \geq 1 \\ , & x<1\end{array}\right.$ is :
(A) continuous at $x=1$
(B) differentiable at $\mathrm{x}=1$
(C) continuous at $\mathrm{x}=3$
(D) differentiable at $x=3$

Sol. [A, B, C]
$\Rightarrow f(x)=\left[\begin{array}{cc}x-3 & \text { if } x \geq 3 \\ 3-x & \text { if } 1 \leq x<3 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4} & \text { if } x<1\end{array}\right.$
$\Rightarrow \mathrm{f}^{\prime}\left(1^{+}\right)=\operatorname{limit}_{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(1+\mathrm{h})-\mathrm{f}(1)}{\mathrm{h}}$
$\Rightarrow \operatorname{limit}_{\mathrm{h} \rightarrow 0} \frac{3-(1+\mathrm{h})-2}{\mathrm{~h}}=-1$
$\Rightarrow f^{\prime}\left(1^{-}\right)=\operatorname{limit}_{h \rightarrow 0} \frac{\frac{(1-h)^{2}}{4}-\frac{3}{2}(1-h)+\frac{13}{4}-2}{-h}$
$\Rightarrow \operatorname{limit}_{\mathrm{h} \rightarrow 0} \frac{(1-\mathrm{h})^{2}-6(1-\mathrm{h})+5}{-4 \mathrm{~h}}$
$\Rightarrow \operatorname{limit}_{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}^{2}-2 \mathrm{~h}+6 \mathrm{~h}}{-4 \mathrm{~h}}=-1$
$\Rightarrow \mathrm{f}^{\prime}$ is continuous at $\mathrm{x}=1$
Q. 11 Which of the following statements are true?
(A) If $x e^{x y}=y+\sin -x$, then at $y I(0)=1$.
(B)If $f(x)=a_{0} x^{2 m+} 1+a_{1} x^{2 m}+a_{3} x^{2 m-1}+\ldots \ldots+a_{2 m}+1=0\left(a_{0} \neq 0\right)$ is a polynomial equation with rational co-efficients then the equation $f^{\prime \prime}(x)=0$ must have a real root. $(m \in N)$.
(C) If $(x-r)$ is a factor of the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-I}+a_{n-2} x^{n-2}+\ldots . .+a_{0}$ repeated m times where $1 \leq m \leq n$ then r is a root of the equation $f^{\prime}(x)=0$ repeated $(m-1)$ times.
(D) If $y=\sin ^{-1}\left(\cos \sin ^{-1} x\right)+\cos ^{-1}\left(\sin \cos ^{-1} x\right)$ then $\frac{d y}{d x}$ is independent on x.

Sol. [A, C, D]
[D] Let $\sin ^{-1} \mathrm{x}=\mathrm{t}$
$\Rightarrow \cos ^{-1} \mathrm{x}=\frac{\pi}{2}-\mathrm{t}$
$\Rightarrow y=\sin ^{-1}(\cos t)+\cos ^{-1}\left(\sin \left(\frac{\pi}{2}-t\right)\right)=\sin ^{-1}(\cos t)+\cos ^{-1}(\cos t)$
$\Rightarrow \mathrm{y}=\frac{\pi}{2}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=0$
Q. 12 Let $y=\sqrt{x+\sqrt{x+\sqrt{+\ldots \ldots \ldots . . \infty}}}$ then $\frac{d y}{d x}=$
(A) $\frac{1}{2 y-1}$
(B) $\frac{x}{x+2 y}$
(C) $\frac{1}{\sqrt{1+4 \mathrm{x}}}$
(D) $\frac{y}{2 x+y}$

Sol. [A, C, D]
$\Rightarrow y^{2}=x+y$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \mathrm{y}-1}$
also $y=\frac{x}{y}+1$
$\Rightarrow \frac{d y}{d x}=\frac{y}{2 x+y}$
make a quadratic in y to get explicit function
Q. 13 If $\sqrt{y+x}+\sqrt{y-x}=c$ (where $c \neq 0$), then $\frac{d y}{d x}$ has the value equal to
(A) $\frac{2 x}{c^{2}}$
(B) $\frac{x}{y+\sqrt{y^{2}-x^{2}}}$
(C) $\frac{y \sqrt{y^{2}-x^{2}}}{x}$
(D) $\frac{c^{2}}{2 y}$

Sol. [A, B, C]
\Rightarrow Square both sides, differentiate and rationalize
Q. 14 If $f(x)=\cos \left[\frac{\pi}{x}\right] \cos \left(\frac{\pi}{2}(x-1)\right)$; where $[x]$ is the greatest integer function of x, then $f(x)$ is continuous at
(A) $\mathrm{x}=0$
(B) $x=1$
(C) $x=2$
(D) none of these

Sol. [B, C]

$\Rightarrow(\mathrm{A})=$ Not defined at $\mathrm{x}=0$;
$\Rightarrow(\mathrm{B})=\mathrm{f}(1)=\cos 3 ; \mathrm{f}(2)=0$ and both the limits exist
Q. 15 Select the correct statements.
(A) The function f defined by $f(x)=f(x)=\left[\begin{array}{cl}2 x^{2}+3 & \text { for } x \leq 1 \\ 3 x+2 & \text { for } x>1\end{array}\right.$ is neither differentiable nor continuous at $\mathrm{x}=1$
(B) The function $f(x)=x^{2}|x|$ is twice differentiable at $x=0$.
(C) If f is continuous at $x=5$ and $f(5)=2$ then $\lim _{x \rightarrow 2} f\left(4 x^{2}-11\right)$ exists.
(D) If $\lim _{x \rightarrow a}(f(x)+g(x))=2$ and $\lim _{x \rightarrow a}(f(x)-g(x))=1$ then $\lim _{x \rightarrow a} f(x) \cdot g(x)$ need not exist.

Sol. [B, C]

Q. 16 Which of the following functions has/have removable discontinuity at $\mathrm{x}=1$.
(A) $f(x)=\frac{1}{\ln |x|}$
(B) $f(x)=\frac{x^{2}-1}{x^{3}-1}$
(C) $f(x)=2^{-2^{\left(\frac{1}{1-x}\right)}}$
(D) $f(x)=\frac{\sqrt{x+1}-\sqrt{2 x}}{x^{2}-x}$

Sol. [B, D]

(A) $\quad \lim _{x \rightarrow 1} f(x)$ does not exist
(B) $\quad \lim _{\mathrm{x} \rightarrow 1} \mathrm{f}(\mathrm{x})=\frac{2}{3} \quad \therefore \mathrm{f}(\mathrm{x})$ has removable discontinuity at $\mathrm{x}=1$
(C) $\quad \lim _{x \rightarrow 1} f(x)$ does not exist
(D) $\quad \lim _{\mathrm{x} \rightarrow 1} \mathrm{f}(\mathrm{x})=\frac{-1}{2 \sqrt{2}} \quad \therefore \mathrm{f}(\mathrm{x})$ has removable discontinuity at $\mathrm{x}=1$
Q. $17 f(x)$ is an even function, $x=1$ is a point of minima and $x=2$ is a point of maxima for $y=f(x)$. Further $\lim _{x \rightarrow \infty} f(x)=0$, and $\lim _{x \rightarrow \infty} f(x)=\infty$. $f(x)$ is increasing in $(1,-2) \&$ decreasing everywhere in $(0,1) \cup(2, \infty)$. Also $f(1)=3 \& f(2)=5$ Then
(A) $f(x)=0$ has no real roots
(B) $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{y}=|\mathrm{f}(\mathrm{x})|$ are identical functions
(C) $\mathrm{f}^{\prime}(\mathrm{x})=0$ has exactly four real roots whose sum is zero
(D) $f^{\prime}(x)=0$ has exactly four real roots whose sum is 6

Sol. [A, B, C]

$\lim _{x \rightarrow 0} f(x)=\infty, \quad \quad \lim _{x \rightarrow \infty} f(x)=0$

$\Rightarrow \mathrm{f}(\mathrm{x})$ is increasing in $(1,2)$ and decreasing in $(0,1) \cup(2, \infty)$ from the graph
Q. 18
Q. 19
Q. 20

PASSAGE 1

A curve is represented parametrically by the equations $x=f(t)=a^{\ln \left(b^{t}\right)}$ and $y=g(t)=b^{-\ln \left(a^{t}\right)} a, b>0$ and $\mathrm{a} \neq 1, \mathrm{~b} \neq 1$ where $\mathrm{t} \in \mathrm{R}$.
Q. 21 Which of the following is not a correct expression for $\frac{d y}{d x}$?
(A) $\frac{-1}{\mathrm{f}(\mathrm{t})^{2}}$
(B) $-(\mathrm{g}(\mathrm{t}))^{2}$
(C) $\frac{-g(t)}{f(t)}$
(D) $\frac{-\mathrm{f}(\mathrm{t})}{\mathrm{g}(\mathrm{t})}$

Sol. [D]
Q. 22 The value of $\frac{d^{2} y}{d x^{2}}$ at the point where $f(t)=g(t)$ is
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2

Sol. [D]
Q. 23 The value of $\frac{f(t)}{f^{\prime}(t)} \cdot \frac{f^{\prime}(-t)}{f^{\prime}(-t)}+\frac{f(-t)}{f^{\prime}(-t)} \cdot \frac{f^{\prime \prime}(t)}{f^{\prime}(t)} \forall t \in R$, is equal to
(A) -2
(B) 2
(C) -4
(D) 4

Sol. [B]

$\Rightarrow \mathrm{x}=\mathrm{f}(\mathrm{t})=\mathrm{a}^{\ln \left(\mathrm{b}^{\mathrm{t}}\right)}=\mathrm{a}^{\mathrm{tln} \mathrm{b}}$
$\Rightarrow \mathrm{y}=\mathrm{g}(\mathrm{t})=\mathrm{b}^{-\ln \left(\mathrm{a}^{t}\right)}=\left(\mathrm{b}^{\ln \mathrm{a}}\right)^{-\mathrm{t}}=\left(\mathrm{a}^{\ln \mathrm{b}}\right)^{-\mathrm{t}}=\mathrm{a}^{-\mathrm{tln} \mathrm{b}}$
$\Rightarrow \therefore \mathrm{y}=\mathrm{g}(\mathrm{t})=\mathrm{a}^{\ln \left(\mathrm{b}^{-1}\right)}=\mathrm{f}(-\mathrm{t})$
From equation (1) and (2)
$\Rightarrow \mathrm{xy}=1$
(i) $\because y=\frac{1}{x}$
$\Rightarrow \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1}{\mathrm{x}^{2}}=-\frac{1}{\mathrm{f}^{2}(\mathrm{t})}$
\Rightarrow Also $\mathrm{xy}=1$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1}{\mathrm{x}^{2}}=-\frac{\mathrm{y}^{2}}{1}=-\mathrm{g}^{2}(\mathrm{t})$
(B) is correct
\Rightarrow Again $x y=1 \quad \frac{d y}{d x}=-\frac{y}{x}=-\frac{g(t)}{f(t)}$
(C) is correct
(D) is incorrect
(ii) $\mathrm{f}(\mathrm{t})=\mathrm{g}(\mathrm{t}) \Rightarrow \mathrm{f}(\mathrm{t})=\mathrm{f}(-\mathrm{t}) \Rightarrow \mathrm{t}=0$
$\{\because \mathrm{f}(\mathrm{t})$ is one-one function $\}$
At $t=0, x=y=1$
$\Rightarrow \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{\mathrm{x}^{2}}$ and $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{2}{\mathrm{x}^{3}}$
\Rightarrow At $x=1, \frac{d^{2} y}{d x^{2}}=2$
(iii) $\therefore \mathrm{xy}=1 \quad \therefore \mathrm{fg}=1$
$\Rightarrow \therefore \mathrm{fg} \mathrm{g}^{\prime}+\mathrm{g}^{\prime} \mathrm{f}^{\prime}+\mathrm{g}^{\prime} \mathrm{f}^{\prime}+\mathrm{gf} \mathrm{f}^{\prime}=0$
$\Rightarrow f g^{\prime \prime}+\mathrm{gf}^{\prime \prime}+2 \mathrm{~g}^{\prime} \mathrm{f}^{\prime}=0$
$\Rightarrow \frac{\mathrm{fg}^{\prime \prime}}{\mathrm{f}^{\prime} \mathrm{g}^{\prime}}+\frac{\mathrm{gf} \mathrm{g}^{\prime \prime}}{\mathrm{g}^{\prime}}=-2$
from equation (2)
$\Rightarrow \mathrm{g}(\mathrm{t})=\mathrm{f}(-\mathrm{t})$
$\Rightarrow \therefore \mathrm{g}^{\prime}(\mathrm{t})=-\mathrm{f}^{\prime}(-\mathrm{t})$
and $g^{\prime \prime}(t)=f "(-t)$
substituting in equation (3)
$\Rightarrow \frac{f(t)}{f^{\prime}(t)} \cdot \frac{f^{\prime \prime}(-t)}{-f^{\prime}(-t)}+\frac{f(-t)}{-f^{\prime}(-t)} \cdot \frac{f^{\prime \prime}(t)}{f^{\prime}(t)}=-2$
$\Rightarrow \frac{f(t)}{f^{\prime}(t)} \cdot \frac{f^{\prime \prime}(-t)}{f^{\prime}(-t)}+\frac{f(-t)}{f^{\prime}(-t)} \cdot \frac{f^{\prime \prime}(t)}{f^{\prime}(t)}=2$
$\Rightarrow 1$

PASSAGE 2

Let a function be defined as $f(x)=\left\{\begin{array}{cc}{[x],} & -2 \leq x \leq-\frac{1}{2} \\ 2 x^{2}-1, & -\frac{1}{2}<x \leq 2\end{array}\right.$, where [.] denotes greatest integer function.
Answer the following question by using the above information.
Q. 24 The number of points of discontinuity of $f(x)$ is
(A) 1
(B) 2
(C) 3
(D) 0

Sol. [B]

\Rightarrow Two points of discontinuity $-1,-\frac{1}{2}$
Q. 25 The function $\mathrm{f}(\mathrm{x}-1)$ is discontinuous at the points
(A) $-1,-\frac{1}{2}$
(B) $-\frac{1}{2}, 1$
(C) $0, \frac{1}{2}$
(D) 0,1

Sol. [C]

\Rightarrow Discontinuous at $1, \frac{1}{2}$
Q. 26 Number of points where $\mid f(x)$ is not differentiable is
(A) 1
(B) 2
(C) 3
(D) 4

Sol. [C]

\Rightarrow at $-1,-\frac{1}{2}, \frac{1}{\sqrt{2}}$ the function is not differentiable.

PASSAGE 3

Two students, A \& B are asked to solve two different problem. A is asked to evaluate
$\lim _{x \rightarrow 0} \frac{1-\cos (\ln (1+x))}{x^{2}} \& B$ is asked to evaluate $\lim _{x \rightarrow \infty}\left(\frac{\sqrt{n}}{\sqrt{n^{3}+1}}+\frac{\sqrt{n}}{\sqrt{n^{3}+1}}+\ldots \ldots+\frac{\sqrt{n}}{\sqrt{n^{3}+2 n}}\right), n \in N . A$
provides the following solution
Let $h=\lim _{x \rightarrow 0} \frac{1-\cos \left(\frac{\ln (1+x)}{x} \cdot x\right)}{x^{2}}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}\left(\operatorname{As} \lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1\right)$
$1_{1}=\frac{1}{2}$
B provides the following solution
Let $1_{2}=\lim _{n \rightarrow \infty}\left\{\sum_{r=1}^{2 n} \frac{\sqrt{n}}{\sqrt{n^{3}+r}}\right\}=\lim _{n \rightarrow \infty}\left\{\sum_{r=1}^{2 n} \frac{1}{n} \frac{\sqrt{n}}{\sqrt{n+\frac{r}{n^{2}}}}\right\}$
$\lim _{n \rightarrow \infty}\left[\frac{1}{n}\left\{\sqrt{\frac{n}{n+\frac{1}{n^{2}}}}+\sqrt{\frac{n}{n+\frac{2}{n^{2}}}}+\ldots \ldots .+\sqrt{\frac{n}{n+\frac{2 n}{n^{2}}}}\right\}\right]$
$\lim _{n \rightarrow \infty}[\frac{1}{n}(\underbrace{1+1+\ldots \ldots .+1}_{2 n \text { times }})]=\lim _{n \rightarrow \infty} \frac{2 n}{n}=2$
Q. 27 Identify the correct statement
(A) both of them get the correct answer
(B) both of them get the incorrect answer
(C) A gets the correct answer while B gets the incorrect answer.
(D) B gets the correct answer while A gets the incorrect answer.

Sol. [A]
Q. 28 Who has solved the problem correctly.
(A) A
(B) B
(C) both of them
(D) no one

Sol. [D]
Q. $29 \mathrm{f}(\mathrm{x})=\left[\begin{array}{cl}41_{1}\left(\frac{\tan \mathrm{x}-\sin \mathrm{x}}{\mathrm{x}^{3}}\right) & \begin{array}{l}\mathrm{x}<0 \\ \mathrm{k}\end{array} \\ \begin{array}{l}\mathrm{x}=0 \\ 1_{2}\left(\frac{\mathrm{e}^{x}-\mathrm{x}-1}{1-\cos \mathrm{x}}\right)\end{array} & \begin{array}{l}\mathrm{x}>0\end{array}\end{array}\right.$
continuous at $\mathrm{x}=0$ the K is equal to:
(A) 1
(B) 2
(C) 3
(D) no value of K

Sol. [D]
$\Rightarrow 1_{1}=\lim _{x \rightarrow 0} \frac{1-\cos (\ln (1+x))}{\ln ^{2}(1+x)} \cdot\left(\frac{\ln (1+x)}{x}\right)^{2}=\frac{1}{2}$

A \& B have made the same mistake, they used the notion of limit partly in the problem, where as once the limiting notion has been used the resulting expression must be free from the variable on which the limit has been imposed
$\Rightarrow \lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{n} \sqrt{\mathrm{n}}}{\sqrt{\mathrm{n}^{3}+1}}<1_{2}<\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{n} \sqrt{2}}{\sqrt{\mathrm{n}^{3}+1}}$
Hence $l_{2}=2$ (sandwich theorem)
\Rightarrow Sol. $1 \quad$ Hence (A)
\Rightarrow Sol. $2 \quad$ Hence (D)
\Rightarrow Sol. $3 \quad \lim _{x \rightarrow 0} 4 \cdot \frac{1}{2}\left(\frac{\tan x-\sin x}{x^{3}}\right)=4 \cdot \frac{1}{2} \cdot \frac{1}{2}=1$
$\Rightarrow \operatorname{liml}_{x \rightarrow 0}\left(\frac{e^{x}-x-1}{x^{2}} \cdot \frac{x^{2}}{1-\cos x}\right)=2(2 \cdot 2)=8$
\Rightarrow for no value if K
Hence (D)

PASSAGE 4

Q. 30
Q. 31
Q. 32

Matrix match type
Q. 33
Q. 34

Column - I

Column - II

(A) $\quad f(x)=\left[\begin{array}{lll}x+1 & \text { if } & x<0 \\ \cos x & \text { if } & x \geq 0\end{array}\right.$, at $x=0$ is
(P) continuous
(B) For every $x \in R$ the function
(Q) differentiability

$$
g(x)=\frac{\sin (\pi[x-\pi])}{1+[x]^{2}}
$$

(R) discontinuous
where $[x]$ denotes the greatest integer function is (S) non derivable
(C) $\mathrm{h}(\mathrm{x})=\sqrt{\{\mathrm{x}\}^{2}}$ where $\{\mathrm{x}\}$ denotes fractional part function for all $x \in I$, is
(D) $\quad k(x)=\left[\begin{array}{cc}x^{\frac{1}{\ln x}} & \text { if } x \neq 1 \\ e & \text { if } x=1\end{array}\right.$ at $x=1$ is

Sol. $\quad(\mathrm{A}) \Rightarrow \mathbf{P}, \mathrm{S} ;(\mathrm{B}) \Rightarrow \mathbf{P}, \mathbf{Q} ;(\mathrm{C}) \Rightarrow \mathrm{R}, \mathrm{S} ;(\mathrm{D}) \Rightarrow \mathbf{P}, \mathbf{Q}$
(A) $\mathrm{f}^{\prime}(0)=\lim _{\mathrm{h} \rightarrow 0} \frac{\cosh -0}{\mathrm{~h}}$ does not exist. Obviously $\mathrm{f}(0)=\mathrm{f}\left(0^{+}\right)=1$

Hence continuous and not derivable
(B) $\quad \mathrm{g}(\mathrm{x})=0$ for all x , hence continuous and derivable
(C) as $0 \leq\{\mathrm{f}(\mathrm{x})\}<1$, hence $\mathrm{h}(\mathrm{x})=\sqrt{\{\mathrm{x}\}^{2}}=\{\mathrm{x}\}$ which is discontinuous hence non derivable all $\mathrm{x} \in \mathrm{I}$
(D) $\quad \lim _{x \rightarrow 1} x^{\frac{1}{\ln x}}=\lim _{x \rightarrow 1} x^{\log _{x} e}=e=f(1)$

\Rightarrow Hence $\mathrm{k}(\mathrm{x})$ is constant for all $\mathrm{x}>0$ hence continuous and differentiable at $\mathrm{x}=1$.
Q. 35

Column - I

(A) Number of points of discontinuity of $f(x)=\tan ^{2} x-\sec ^{2} x$ in $(0,2 \pi)$ is
(B) Number of points at which $f(x)=\sin ^{-1} x+\tan ^{-1} x+\cot ^{-1} x$ is non-differentiable in $(-1,1)$ is
(C) Number of points of discontinuity of $y=[\sin x], x \in[0,2 \pi)$ where [.] represents greatest integer function
(D) Number of points where $y=\left|(x-1)^{3}\right|+\left|(x-2)^{5}\right|+|x-3|$ is non-differentiable
Sol. $\quad(A) \Rightarrow \mathbf{q} ;(\mathbf{B}) \Rightarrow \mathbf{r} ;(\mathbf{C}) \Rightarrow \mathbf{q} ;(\mathrm{D}) \Rightarrow \mathbf{p}$
(A) $\tan ^{2} x$ is discontinuous at $x=\frac{\pi}{2}, \frac{3 \pi}{2}$
$\Rightarrow \sec ^{2} \mathrm{x}$ is discontinuous at $\mathrm{x}=\mathrm{x}=\frac{\pi}{2}, \frac{3 \pi}{2}$
\Rightarrow Number of discontinuities $=2$
(B) Since $f(x)=\sin ^{-1} x+\tan ^{-1} x+\cot ^{-1} x=\sin ^{-1} x+\frac{\pi}{2}$
$\Rightarrow \therefore \mathrm{f}(\mathrm{x})$ is differentiable in $(-1,1)$
\Rightarrow number of points of non-differentiable $=0$
(C) $y=[\sin x]= \begin{cases}0 & , 0 \leq x \frac{\pi}{2} \\ 1 & , x=\frac{\pi}{2} \\ 0 & , \frac{\pi}{2}<x \leq \pi \\ -1 & , \pi<x<2 \pi \\ 0 & , \quad x=2 \pi\end{cases}$
$\Rightarrow \therefore$ Points of discontinuity are $\frac{\pi}{2}, \pi$
(D) $\quad \mathrm{y}=\left|(\mathrm{x}-1)^{3}\right|+\left|(\mathrm{x}-2)^{5}\right|+|\mathrm{x}-3|$ is non differentiable at $\mathrm{x}=3$ only.

CONTINUITY \& DIFFERENTIABILITY
 EXERCISE 3

1
Let $\mathrm{f}(\mathrm{x})=\left[\begin{array}{cl}\frac{\ln \cos \mathrm{x}}{\sqrt[4]{1+\mathrm{x}^{2}}-1} & \text { if } \mathrm{x}>0 \\ \frac{\mathrm{e}^{\sin 4 \mathrm{x}}-1}{\ln (1+\tan 2 \mathrm{x})} & \text { if } \mathrm{x}<0\end{array}\right.$
Is it possible to define $f(0)$ to make the function continuous at $x=0$. If yes what is the value of $f(0)$, if not then indicate the nature of discontinuity.

Sol. \quad LHL $_{x=0}=\lim _{x \rightarrow 0^{\circ}} \frac{e^{\sin 4 x}-1}{\ell n(1+\tan 2 x)}$
put $x=0-h$
$=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{-\sin 4 \mathrm{x}}-1}{\ell \mathrm{n}(1-\tan 2 \mathrm{~h})}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{-\sin 4 \mathrm{~h}}-1}{-\sin 4 \mathrm{~h}}\left(\frac{-\sin 4 \mathrm{~h}}{4 \mathrm{~h}}\right) \cdot 4 \mathrm{~h}\left(\frac{1}{\frac{\ell \mathrm{n}(1-\tan 2 \mathrm{~h})}{(-\tan 2 \mathrm{~h})}\left(\frac{-\tan 2 \mathrm{~h}}{2 \mathrm{~h}}\right) \cdot 2 \mathrm{~h}}\right)$
$\mathrm{f}\left(0^{-}\right)=2$

$$
\begin{aligned}
\text { RHL }_{\mathrm{x}=0} & =\lim _{x \rightarrow 0^{+}}\left(\frac{\ln \cos \mathrm{x}}{\sqrt[4]{\left(1+\mathrm{x}^{2}\right)}-1}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{\cos \mathrm{x}-1}{1+\frac{1}{4} \mathrm{x}^{2}-1}\right) \\
& =\lim _{x \rightarrow 0^{+}}\left(\frac{1-\cos \mathrm{x}}{\mathrm{x}^{2}}\right)(-4)
\end{aligned}
$$

$\mathrm{f}\left(0^{+}\right)=-2$
hence $f(0)$ can not define.
and $\because \mathrm{f}\left(0^{-}\right) \& \mathrm{f}\left(0^{+}\right)$are finite hence there non-removable type disconti.
Let $y_{n}(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots \ldots \ldots \ldots .+\frac{x^{2}}{\left(1+x^{2}\right)^{n-1}}$ and $y(x)=\operatorname{Lim}_{n \rightarrow \infty} y_{n}(x)$
Discuss the continuity of $y_{n}(x)(n \in N)$ and $y(x)$ at $x=0$
Sol. $\quad y_{n}(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots+\frac{x^{2}}{\left(1+x^{2}\right)^{n-1}}$
$\mathrm{y}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}^{2} \frac{\left(1-\left(\frac{1}{1+\mathrm{x}^{2}}\right)^{\mathrm{n}}\right)}{1-\frac{1}{1+\mathrm{x}^{2}}}$

$$
=\mathrm{x}^{2} \frac{\left\{1-\left(\frac{1}{1+\mathrm{x}^{2}}\right)^{\mathrm{n}}\right\}}{\frac{1+\mathrm{x}^{2}-1}{1+\mathrm{x}^{2}}}
$$

$\mathrm{y}_{\mathrm{n}}(\mathrm{x})=\left(1+\mathrm{x}^{3}\right)\left\{1-\left(1+\mathrm{x}^{2}\right)^{-\mathrm{n}}\right\}$
$3 \operatorname{Let} \mathrm{f}(\mathrm{x})=\left[\begin{array}{cl}\frac{1-\sin \pi \mathrm{x}}{1+\cos 2 \pi \mathrm{x}}, & \mathrm{x}<\frac{1}{2} \\ \mathrm{p}, & \mathrm{x}=\frac{1}{2} \\ \frac{\sqrt{2 \mathrm{x}-1}}{\sqrt{4+\sqrt{2 x-1}}-2}, & \mathrm{x}>\frac{1}{2}\end{array}\right.$. Determine the value of p , if possible, so that the function is continuous at $\mathrm{x}=$ $1 / 2$.

Sol. V.F. $\left.\right|_{x=\frac{1}{2}}=p$

$$
\begin{aligned}
\text { LHL }\left.\right|_{x=\frac{1}{2}} & =\lim _{x \rightarrow \frac{1-}{2}} f(x) \\
& =\lim _{x \rightarrow \frac{1}{2}} \frac{1-\sin \pi x}{1+\cos (2 \pi x)}
\end{aligned}
$$

put $\mathrm{x}=\frac{1}{2}-\mathrm{h}$
$=\lim _{h \rightarrow 0} \frac{1-\sin \left(\frac{\pi}{2}-\pi h\right)}{1+\cos (\pi-2 \pi h)}$
$=\lim _{h \rightarrow 0}\left(\frac{1-\cos \pi h}{(\pi h)^{2}}\right)\left(\frac{1}{\frac{1-\cos (2 \pi h)}{(2 \pi h)^{2}}}\right)\left(\frac{\pi^{2} h^{2}}{4 \pi^{2} h^{2}}\right)$

LHL $\left.\right|_{x=\frac{1}{2}}=\frac{1}{4}$
$\left.R H L\right|_{x=\frac{1}{2}}=\lim _{x \rightarrow\left(\frac{1}{2}\right)^{+}} f(x)$

$$
\begin{aligned}
& =\lim _{x \rightarrow\left(\frac{1}{2}\right)^{+}}\left(\frac{\sqrt{2 x-1}}{\sqrt{4+\sqrt{2 x-1}}-2}\right) \\
& =\lim _{x \rightarrow \frac{+}{2}}\left(\frac{\sqrt{2 x-1}}{4+\sqrt{2 x-1}-4}\right)(\sqrt{4+\sqrt{2 x-1}}+2)
\end{aligned}
$$

RHL $\left.\right|_{x=\frac{1}{2}}=4$
$\because \operatorname{LHL}_{\left\lvert\, x=\frac{1}{2}\right.} \neq$ RHL $\left.\right|_{x=\frac{1}{2}}$
so the value of function cannot determine \& the function is discontinuous.
4 Given the function $\mathrm{g}(\mathrm{x})=\sqrt{6-2 \mathrm{x}}$ and $\mathrm{h}(\mathrm{x})=2 \mathrm{x}^{2}-3 \mathrm{x}+\mathrm{a}$. Then
(a) evaluate $\mathrm{h}(\mathrm{g}(2)$)
(b) If $f(x)=\left[\begin{array}{ll}g(x), & x \leq 1 \\ h(x), & x>1\end{array}\right.$, find 'a' so that f is continuous.

Sol. (i) $\mathrm{h}(\mathrm{g}(2))=$
$g(2)=\sqrt{6-4}=\sqrt{2}$

$$
\begin{aligned}
& h(x)=2 x^{2}-3 x+a \\
& h(\sqrt{2})=4-3 \sqrt{2}+a \text { Ans }
\end{aligned}
$$

(ii) $f(x)= \begin{cases}g(x) & ; \quad x \leq 1 \\ h(x) & ; \quad x>1\end{cases}$

$$
f(x)=\left\{\begin{array}{ccc}
\sqrt{6-2 x} & ; x \leq 1 \tag{1}\\
2 x^{2}-3 x+a & ; & x>1
\end{array}\right.
$$

V.F. $\left.\right|_{x=1}=2$
R.H.L. $\left.\right|_{x=1}=\lim _{x \rightarrow 1^{+}} f(x)$

$$
\begin{equation*}
=\lim _{x \rightarrow 1^{+}}\left(2 x^{2}-3 x+a\right) \tag{2}
\end{equation*}
$$

R.H.L. $\left.\right|_{x=1}=\mathrm{a}-1$
L.H.L. $\left.\right|_{x=1}=\lim _{x \rightarrow 1^{-}} f(x)$

$$
=\lim _{x \rightarrow 1^{-}} \sqrt{6-2 x}
$$

$$
=2
$$

since function is conti

$$
\begin{aligned}
\text { L.H.L. }\left.\right|_{x=1} & =\text { R.H.L. }\left.\right|_{x=1}=\left.V F\right|_{x=1} \\
2 & =\mathrm{a}-1=2 \\
\mathrm{a}-1=2 & \Rightarrow \mathrm{a}=3
\end{aligned}
$$

5 Let $f(x)=\left[\begin{array}{lll}1+x & , & 0 \leq x \leq 2 \\ 3-x & , 2<x \leq 3\end{array}\right.$. Determine the form of $g(x)=f[f(x)] \&$ hence find the point of discontinuity of g , if any.

Sol. $\quad f(x)=\left\{\begin{array}{lll}1+x & ; & 0 \leq x \leq 2 \\ 3-x & ; & 2<x \leq 3\end{array}\right.$

$\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x}))$

$$
=\left\{\begin{array}{lll}
1+\mathrm{f}(\mathrm{x}) & ; & 0 \leq \mathrm{f}(\mathrm{x}) \leq 2 \\
3-\mathrm{f}(\mathrm{x}) & ; & 2<\mathrm{f}(\mathrm{x}) \leq 3
\end{array}\right.
$$

$\operatorname{let} f(x)=y$
$f(y)=\left\{\begin{array}{lll}1+y & ; & 0 \leq y \leq 2 \\ 3-y & ; & 2<y \leq 3\end{array}\right.$

$=\left\{\begin{array}{lll}1+(1+x) & ; & 0 \leq x \leq 1 \\ 1+(3-x) & ; & 2<x \leq 3 \\ 3-(1+x) & ; & 1<x \leq 2\end{array}\right.$

$$
=\left\{\begin{array}{lll}
2+\mathrm{x} & ; & 0 \leq \mathrm{x} \leq 1 \\
2-\mathrm{x} & ; & 1<\mathrm{x} \leq 2 \\
4-\mathrm{x} & ; & 2 \leq \mathrm{x} \leq 3
\end{array}\right.
$$

so the point of discontinuity
1,2 Ans
Or
F.V. $\left.\right|_{x}=$ LHL $=$ RHL

6 Let $[x]$ denote the greatest integer function \& $f(x)$ be defined in a neighbourhood of 2 by

$$
f(x)=\left[\begin{array}{cl}
\frac{(\exp \{(x+2) \ln 4\})^{\frac{[x+1]}{4}}-16}{4^{x}-16} & , x<2 \\
\frac{1-\cos (x-2)}{(x-2) \tan (x-2)} & , x>2
\end{array}\right.
$$

Find the values of $\mathrm{A} \& \mathrm{f}(2)$ in order that $\mathrm{f}(\mathrm{x})$ may be continuous at $\mathrm{x}=2$.

Sol. \quad RHL $\left.\right|_{x=2}=\lim _{x \rightarrow 2^{+}} f(x)$

$$
=\lim _{\mathrm{h} \rightarrow 0} \frac{4^{2} \cdot 4^{\frac{-\mathrm{h}}{2}}-16}{4^{2} \cdot 4^{-\mathrm{h}}-16}
$$

$$
=\lim _{x \rightarrow 2^{+}} \frac{A(1-\cos (x-2))}{(x-2) \cdot \tan (x-2)} \quad=\lim _{h \rightarrow 0} \frac{4^{-n / 2}-1}{4^{-h}-1}
$$

put $x=2+h$

$$
\begin{array}{ll}
=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~A}(1-\cosh)}{\mathrm{htanh}} & =\lim _{\mathrm{h} \rightarrow 0}\left(\frac{4^{-\mathrm{h} / 2}-1}{-\frac{\mathrm{h}}{2}}\right) \cdot\left(-\frac{\mathrm{h}}{2}\right) \frac{1}{\left(\frac{4^{-h}-1}{-\mathrm{h}}\right)(-\mathrm{h})} \\
=\lim _{\mathrm{h} \rightarrow 0} \mathrm{~A}\left(\frac{1-\cosh }{\mathrm{h}^{2}}\right) \frac{1}{\left(\frac{\tan \mathrm{~h}}{\mathrm{~h}}\right)} & =\ln 4 \cdot \frac{1}{2} \cdot \frac{1}{\ln 4}=\frac{1}{2}
\end{array}
$$

RHL $\left.\right|_{x=2}=\frac{A}{2}$
since the function is contin.
$\left.\mathrm{VF}\right|_{\mathrm{x}=2}=\left.\mathrm{RHL}\right|_{\mathrm{x}=2}=\left.\mathrm{LHL}\right|_{\mathrm{x}=2}$
$\operatorname{LHL}_{\mathrm{x}=2} \Rightarrow \lim _{\mathrm{x} \rightarrow 2^{-}} \mathrm{f}(\mathrm{x})$

$$
=\lim _{x \rightarrow 2^{-}}-\frac{\left(e^{(x+2) \ell \ln 4}\right)-16^{\frac{[x+1]}{4}}}{4^{x}-16}
$$

V.F. $\left.\right|_{x=2}=\frac{1}{2}$ Ans

$$
=\lim _{x \rightarrow 2^{-}} \frac{4^{\frac{(x+2)([x]+1)}{4}}-16}{4^{x}-16}
$$

A=1 Ans

$=\lim _{x \rightarrow 2^{-}} \frac{4^{\left(\frac{x+2}{2}\right)}-16}{4^{x}-16}$
put $\mathrm{x}=2-\mathrm{h}$
$=\lim _{x \rightarrow 0} \frac{4^{\frac{4-\mathrm{h}}{2}}-16}{4^{2-\mathrm{h}}-16}$
7 The function $f(x)=\left[\begin{array}{clc}\left(\frac{6}{5}\right)^{\frac{\tan 6 x}{\tan 5 x}} & \text { if } & 0<x<\frac{\pi}{2} \\ b+2 & \text { if } & x=\frac{\pi}{2} \\ (1+|\cos x|)\left(\frac{a \tan x \mid}{b}\right) & \text { if } & \frac{\pi}{2}<x<\pi\end{array}\right.$
Determine the values of ' a ' $\&$ ' b ', if f is continuous at $\mathrm{x}=\pi / 2$.
Sol. V.F. $\left.\right|_{x=\frac{\pi}{2}}=b+2$

$$
\left.\operatorname{LHL}\right|_{x=\frac{\pi}{2}}=\lim _{x \rightarrow \frac{\pi-}{2}} f(x)=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}}\left(\frac{6}{5}\right)^{\frac{\tan 6 x}{\tan 5 x}}
$$

put $x=\frac{\pi}{2}-h$

$$
\text { LHL }\left.\right|_{x=\frac{\pi}{2}}=\lim _{h \rightarrow 0}\left(\frac{6}{5}\right) \frac{\tan (3 \pi-6 h)}{\tan (5 \pi / 2-5 h)}=\lim _{h \rightarrow 0}\left(\frac{6}{5}\right)^{-\frac{\tan 6 h}{\cot 5 h}}=1
$$

$$
\begin{aligned}
\text { RHL }\left.\right|_{x=\frac{\pi}{2}} & =\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{+}} f(x) \\
& =\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{+}}(1-\cos x)^{-\frac{a}{b} \tan x}
\end{aligned}
$$

put $x=\frac{\pi}{2}+h$

$=\mathrm{e}^{\lim _{\mathrm{h} \rightarrow 0}(\sinh) \frac{\mathrm{a}}{\mathrm{b}} \operatorname{coth}}$
$=\mathrm{e}^{\lim _{\mathrm{b} \rightarrow 0} \frac{\mathrm{a}}{\mathrm{b}} \cosh }=\mathrm{e}^{\frac{a}{b}}$
since the function is conti so

$$
\begin{aligned}
\left.\mathrm{LHL}\right|_{\mathrm{x}=\frac{\pi}{2}} & =\left.\mathrm{RHL}\right|_{\mathrm{x}=\frac{\pi}{2}}=\left.\mathrm{V} \cdot \mathrm{~F} \cdot\right|_{\mathrm{x}=\frac{\pi}{2}} \\
1 & =\mathrm{e}^{\mathrm{ab}}=\mathrm{b}+2 \\
\mathrm{a}=0, \mathrm{~b} & =-1
\end{aligned}
$$

$8 \operatorname{Let} f(x)=\left[\begin{array}{cc}\frac{\left(\frac{\pi}{2}-\sin ^{-1}\left(1-\{x\}^{2}\right)\right) \sin ^{-1}(1-\{x\})}{\sqrt{2}\left(\{x\}-\{x\}^{3}\right)} & ; x \neq 0 \\ \frac{\pi}{2} & ; x=0\end{array}\right.$
where $\{x\}$ is the fractional part of x. Consider another function $g(x)$; such that

$$
\begin{aligned}
\mathrm{g}(\mathrm{x}) & =\mathrm{f}(\mathrm{x}) ; \mathrm{x} \geq 0 \\
& =2 \sqrt{2} \mathrm{f}(\mathrm{x}) ; \mathrm{x}<0
\end{aligned}
$$

Discuss the continuity of the function $\mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ at $\mathrm{x}=0$.
Sol. $\left.R H L\right|_{x=0}=\lim _{x \rightarrow 0^{+}} f(x)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\left(\frac{\pi}{2}-\sin ^{-1}\left(1-\left(x-[x]^{2}\right)\right) \sin ^{-1}(1-x+[x])\right.}{\sqrt{2}\left(x-[x]-(x-[x])^{3}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\left(\frac{\pi}{2}-\sin ^{-1}\left(1-x^{2}\right)\right) \sin ^{-1}(1-x)}{\sqrt{2} x\left(1-x^{2}\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-x^{2}\right) \cdot \sin ^{-1}(1-x)}{\sqrt{2} x \cdot\left(1-x^{2}\right)} \\
& =\frac{\pi}{2 \sqrt{2}} \lim _{x \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-x^{2}\right)}{x} \\
& \text { let } \cos ^{-1}\left(1-x^{2}\right)=\theta
\end{aligned}
$$

$$
\begin{aligned}
1-x^{2} & =\cos \theta \\
x^{2} & =1-\cos \theta \\
x & =\sqrt{1-\cos \theta}
\end{aligned}
$$

when $\mathrm{x} \rightarrow 0^{+}$then $\theta \rightarrow 0$

$$
\begin{aligned}
& =\frac{\pi}{2 \sqrt{2}} \lim _{\theta \rightarrow 0^{+}} \frac{\theta}{\sqrt{1-\cos \theta}} \\
& =\frac{\pi}{2 \sqrt{2}} \lim _{\theta \rightarrow 0^{+}} \frac{\theta}{\sqrt{2-\sin ^{2} \theta / 2}}=\frac{\pi}{4} \lim _{\theta \rightarrow 0^{+}} \frac{\theta}{|\sin \theta / 2|} \\
& \quad \text { RHL }_{x=0}=\frac{\pi}{4} \lim _{\theta \rightarrow 0^{+}} 2\left(\frac{\theta / 2}{\sin \theta / 2}\right)=\frac{\pi}{2}
\end{aligned}
$$

LHL $\left.\right|_{x=0}=\lim _{x \rightarrow 0^{-}} f(x)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{-}} \frac{\left(\frac{\pi}{2}-\sin ^{-1}(1-x-[x])^{2}\right) \sin ^{-1}(1-x+[x])}{\sqrt{2}\left(x-[x]-(x-[x])^{3}\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\frac{\pi}{2}-\sin ^{-1}\left(1-(x+1)^{2}\right) \sin ^{-1}(-x)}{\sqrt{2}\left(x+1-(x+1)^{3}\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\left(\frac{\pi}{2} \sin ^{-1}\left(-x^{2}-2 x\right)\right) \sin ^{-1}(-x)}{\sqrt{2}(x+1)\left(-x^{2}-2 x\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\cos ^{-1}\left(-x^{2}-2 x\right) \sin ^{-1}(x)}{\sqrt{2}(x+1)\left(x^{2}+2 x\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{\pi-\cos ^{-1}\left(x^{2}+2 x\right)}{\sqrt{2}(x+1)(x+2)} \cdot \frac{\sin ^{-1} x}{x}
\end{aligned}
$$

$\mathrm{LHL}_{\mathrm{x}=0}=\frac{\pi}{4 \sqrt{2}}$
for $\mathrm{f}(\mathrm{x})$ since $\left.\mathrm{LHL}\right|_{\mathrm{x}=0} \neq$ RHL $_{\mathrm{x}=0}$ so the function is discontinuous at $\mathrm{x}=0$.
for $\mathrm{g}(\mathrm{x}) \Rightarrow$
RHL $\left.\right|_{x=0}=\lim _{x \rightarrow 0^{+}} g(x)$

$$
=\lim _{x \rightarrow 0^{+}} f(x)=\frac{\pi}{2}
$$

$$
\mathrm{LHL}_{\mathrm{x}=0}=\lim _{\mathrm{x} \rightarrow 0^{-}} 2 \sqrt{2} \mathrm{f}(\mathrm{x})
$$

$$
=2 \sqrt{2} \lim _{x \rightarrow 0^{-}} f(x)
$$

$$
=2 \sqrt{2} \cdot \frac{\pi}{4 \sqrt{2}}=\frac{\pi}{2}
$$

$g(0)=f(0)=\frac{\pi}{2}$

is continuous but not derivable at $\mathrm{x}=0$ then find

Sol. $f(x)=\left[\begin{array}{c}-\frac{x^{2}}{2} \text { for } x \leq 0 \\ x^{n} \sin \frac{1}{x} \text { for } x>0\end{array}\right.$
$f(x)$ is continuous at $x=0$
$f(0)=0$
$L_{1}=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(\frac{-x^{2}}{2}\right)=0$
$L_{2}=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{n} \sin \frac{1}{x}$
for continuous,
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0^{+}} x^{n} \sin \left(\frac{1}{x}\right)=0$
limit is defined only when
$\therefore \mathrm{n}>0$
since $f(x)$ is non-differentiable at $x=0$
$f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0^{-}} \frac{f(h+0)-f(0)}{2}=\lim _{h \rightarrow 0^{-}} \frac{-\frac{h^{2}}{2}-0}{h}=\lim _{h \rightarrow 0^{-}}\left(\frac{-h}{2}\right)$
$f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(h+0)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{n} \sin \frac{1}{h}}{h}$
$\mathrm{f}^{\prime}\left(0^{+}\right) \neq \mathrm{f}^{\prime}\left(0^{-}\right)$
$\Rightarrow \lim _{h \rightarrow 0^{+}} h^{n-1} \sin \left(\frac{1}{h}\right) \neq 0$
only when $\mathrm{n}-1 \leq 0$
$\Rightarrow \mathrm{n} \leq 1$
from equation (i) \& (ii)
$\mathrm{n} \in(0,1]$

10

$$
f(0)=0 \text { and } f^{\prime}(0)=1 \text {. For a positive integer } \mathrm{k} \text {, show that }
$$

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{1}{x}\left(f(x)+f\left(\frac{x}{2}\right)+\ldots \ldots . f\left(\frac{x}{k}\right)\right)=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots .+\frac{1}{k}
$$

Sol. $\lim _{x \rightarrow 0} \frac{1}{x}\left[f(x)+f\left(\frac{x}{2}\right)+\ldots \ldots+f\left(\frac{x}{k}\right)\right]$
$=\lim _{x \rightarrow 0} \frac{f(x)}{x}+\frac{f\left(\frac{x}{2}\right)}{x}+\ldots .+\frac{f\left(\frac{x}{k}\right)}{x}$
$=\lim _{x \rightarrow 0} \frac{f(x+0)-f(0)}{x}+\lim _{x \rightarrow 0} \frac{f\left(\frac{1}{x}+0\right)-f(0)}{\frac{x}{2}} \cdot \frac{1}{2}+\ldots .+\lim _{x \rightarrow 0^{+}} \frac{f\left(\frac{x}{k}+0\right)-f(0)}{\frac{x}{k}} \cdot \frac{1}{k}$
$=\mathrm{f}^{\prime}(0)+\frac{1}{2} \mathrm{f}^{\prime}(0)+\ldots . .+\frac{1}{\mathrm{k}} \mathrm{f}^{\prime}(0)$
$=1+\frac{1}{2}+\ldots .+\frac{1}{\mathrm{k}}$

11 If $f(x)=\left[\begin{array}{ll}a x^{2}-b & \text { if }|x|<1 \\ -\frac{1}{|x|} & \text { if }|x| \geq 1\end{array}\right.$ is derivable at $x=1$. Find the values of a \& b.

Sol. $\quad f(x)=\left[\begin{array}{cc}a x^{2}-b & \text { if }|x|<1 \\ -\frac{1}{|x|} & \text { if }|x| \geq 1\end{array}\right.$
$\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=1$, hence it is also continuous at $\mathrm{x}=1$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)=f(1) \\
& \begin{aligned}
& \Rightarrow a-b=-1 \\
& f^{\prime}(1)=\lim _{h \rightarrow 0^{-}} \frac{f(h+1)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{a(h+1)^{2}-b+1}{h} \\
&=\lim _{h \rightarrow 0^{-}} \frac{a h^{2}+2 a h+a-b+1}{h} \\
&=\lim _{h \rightarrow 0^{-}} \frac{a h^{2}+2 a h}{h}=\lim _{h \rightarrow 0^{-}}(a h+2 a)=2 a \\
& f^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(h+1)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\frac{-1}{h+1 \mid}+1}{h} \\
&=\lim _{h \rightarrow 0^{+}} \frac{\frac{-1+1+h}{1+h}}{h}=\lim _{h \rightarrow 0^{+}} \frac{1}{1+h}=1 \\
& f^{\prime}\left(1^{-}\right)=f^{\prime}\left(1^{+}\right) \\
& \Rightarrow 2 a=1 \\
& a=1 / 2 \\
& b=3 / 2
\end{aligned}
\end{aligned}
$$

12 The function $f(x)=\left[\begin{array}{ll}a x(x-1)+b & \text { when } x<1 \\ x-1 & \text { when } 1 \leq x \leq 3 \\ {p x^{2}+q x+2} & \text { when } x>3\end{array}\right.$
Find the values of the constants $\mathrm{a}, \mathrm{b}, \mathrm{p}, \mathrm{q}$ so that
(i) $f(x)$ is continuous for all x
(ii) f^{\prime} (1) does not exist
(iii) $\mathrm{f}^{\prime}(\mathrm{x})$ is continuous at $\mathrm{x}=3$

Sol. $\quad f(x)=\left[\begin{array}{cc}a x(x-1)+b & \text { when } x<1 \\ x-1 & \text { when } 1 \leq x \leq 3 \\ \mathrm{px}^{2}+q x+2 & \text { when } x>3\end{array}\right.$
$\mathrm{f}(\mathrm{x})$ is continous at $\mathrm{x}=1$
$\lim _{x \rightarrow 1} f(x)=f(1)$
$\Rightarrow \lim _{x \rightarrow 1^{-}} \mathrm{ax}(\mathrm{x}-1)+\mathrm{b}=0$
$\Rightarrow b=0 \& a \in R$
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(h+1)-f(1)}{h}=\left\{\begin{array}{l}\lim _{h \rightarrow 0^{-}} \frac{a(h+1)(h+1-1)+b}{h} \\ \lim _{h \rightarrow 0^{+}} \frac{h+1-1}{h}\end{array}\right.$

$$
=\left\{\begin{array}{l}
a \\
1
\end{array}\right.
$$

$\because \mathrm{f}^{\prime}(1)=\mathrm{DNE} \Rightarrow \mathrm{a} \neq 1$
$\therefore \mathrm{a} \in \mathrm{R}-\{1\} \& \mathrm{~b}=0$
$\mathrm{f}(\mathrm{x})$ is cont. at $\mathrm{x}=3$
$\lim _{x \rightarrow 3} f(x)=f(3)$
$\Rightarrow \lim _{x \rightarrow 3}\left(\mathrm{px}^{2}+9 \mathrm{x}+2\right)=2$
$\Rightarrow 9 \mathrm{p}+3 \mathrm{q}+2=2$
$\Rightarrow 9 \mathrm{p}+3 \mathrm{q}=0$
$\because f^{\prime}(x)$ is cont. at $\mathrm{x}=3$, hence $\mathrm{f}(\mathrm{x})$ is diff. at $\mathrm{x}=3$
$f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(h+3)-f(3)}{h}=\left\{\begin{array}{l}\lim _{h \rightarrow 0^{-}} \frac{3+h-1-2}{h} \\ \lim _{h \rightarrow 0^{+}} \frac{p(h+3)^{2}+q(h+3)+2-2}{h}\end{array}\right.$
[from equation (i) $9 p+3 q=0$]

$$
=\left\{\begin{array}{l}
1 \tag{ii}\\
\lim _{h \rightarrow 0^{+}}(\mathrm{ph}+6 \mathrm{p}+\mathrm{q})
\end{array}=\left\{\begin{array}{c}
1 \\
6 \mathrm{p}+\mathrm{q}
\end{array}\right.\right.
$$

$\therefore \mathrm{f}^{\prime}\left(3^{+}\right)=\mathrm{f}^{\prime}\left(3^{-}\right) \Rightarrow 6 \mathrm{p}+\mathrm{q}=0$
solving equation (i) \& (ii) $p=1 / 3, q=-1$
$a \in R-\{1\}, b=0, p=1 / 3, q=-1$

Discuss the continuity on $0 \leq \mathrm{x} \leq 1 \&$ differentiability at $\mathrm{x}=0$ for the function.
$\mathrm{f}(\mathrm{x})=\mathrm{x} \cdot \sin \frac{1}{\mathrm{x}} \cdot \sin \frac{1}{\mathrm{x} \cdot \sin \frac{1}{\mathrm{x}}}$ where $\mathrm{x} \neq 0, \mathrm{x} \neq 1 / \mathrm{r} \pi \& \mathrm{f}(0)=\mathrm{f}(1 / \mathrm{r} \pi)=0$,
$\mathrm{r}=1,2,3, \ldots \ldots \ldots$
Sol. $f(x)=x \cdot \sin \frac{1}{x} \cdot \sin \frac{1}{x \cdot \sin \frac{1}{x}} x \neq 0,1 / r \pi$
$f(0)=0=f\left(\frac{1}{r \pi}\right), r=1,2,3 \ldots$
$f^{\prime}(0)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(h+0)-f(0)}{h}$

$$
\begin{aligned}
& =\operatorname{Lim}_{h \rightarrow 0} \frac{h \sin \left(\frac{1}{h}\right) \cdot \sin \left(\frac{1}{h \sin \left(\frac{1}{h}\right)}\right)-0}{h} \\
& =\operatorname{Lim}_{h \rightarrow 0} \underbrace{h}_{h \sin \left(\frac{1}{h}\right) \cdot \sin \left(\frac{1}{h \sin \left(\frac{1}{h}\right)}\right)} \\
& =\operatorname{Lim}_{h \rightarrow 0}^{\sin \left(\frac{1}{h}\right) \cdot \sin \left(\frac{1}{h \sin \left(\frac{1}{h}\right)}\right)} \\
& =\operatorname{Lim}_{h \rightarrow 0} \underbrace{\sin \left(\frac{1}{h}\right)}_{1-\leq \leq 1} \underbrace{\sin \left(\frac{1}{h \sin (1 / h)}\right)} \\
& =\operatorname{DNE} \\
& =1
\end{aligned}
$$

so $f(x)$ is not differentiable at $x=0$
$\operatorname{Lim}_{x \rightarrow 0} f(x)=\operatorname{Lim}_{x \rightarrow 0} x \sin \left(\frac{1}{x}\right) \cdot \sin \left(\frac{1}{x \sin (1 / x)}\right)$

$$
\begin{aligned}
& =\operatorname{Lim}_{x \rightarrow 0} \underset{\rightarrow 0}{x} \cdot \underbrace{\sin (1 / x)}_{-1 \leq \leq 1} \cdot \underbrace{\sin \left(\frac{1}{n \sin (1 / x)}\right)}_{-1 \leq \leq 1} \\
& =0 \\
& =\mathrm{f}(0) \\
& \operatorname{Lim}_{x \rightarrow \frac{1}{r \pi}}(x)=\operatorname{Lim}_{x \rightarrow \frac{1}{\pi r}} x \sin \left(\frac{1}{x}\right) \cdot \sin \left(\frac{1}{x \sin \left(\frac{1}{x}\right)}\right) \\
& =\operatorname{Lim}_{x \rightarrow \frac{1}{\mathrm{r} \pi}} x \cdot \sin \left(\frac{1}{x}\right) \cdot \sin \left(\frac{\frac{1}{\sin \left(\frac{1}{x}\right)}}{\left(\frac{1}{x}\right)}\right) \\
& =\operatorname{Lim}_{x \rightarrow \frac{1}{\mathrm{r} \pi}} x \cdot \underbrace{\sin \left(\frac{1}{\mathrm{x}}\right)}_{\rightarrow 0} \cdot \underbrace{\sin \left(\frac{1}{\mathrm{x} \sin \left(\frac{1}{\mathrm{x}}\right)}\right)}_{-1 \leq} \\
& =0 \\
& =\mathrm{f}\left(\frac{1}{\mathrm{r} \pi}\right)
\end{aligned}
$$

Hence function is continuous $\forall \mathrm{x} \in[0,1]$
$14 \mathrm{f}(\mathrm{x})=\left[\begin{array}{lll}1-\mathrm{x} & , & (0 \leq \mathrm{x} \leq 1) \\ \mathrm{x}+2 & , & (1<\mathrm{x}<2) \\ 4-\mathrm{x} & , & (2 \leq \mathrm{x} \leq 4)\end{array}\right.$ Discuss the continuity \& differentiability of $\mathrm{y}=\mathrm{f}[\mathrm{f}(\mathrm{x})]$ for $0 \leq \mathrm{x} \leq 4$.

Sol. $f(x)=\left[\begin{array}{lll}1-x & , & (0 \leq x \leq 1) \\ x+2 & , & (1<x<2) \\ 4-x & , & (2 \leq x \leq 4)\end{array}\right.$
$\mathrm{f}(\mathrm{f}(\mathrm{x}))=\left\{\begin{array}{lll}1-\mathrm{f}(\mathrm{x}) & ; & 0 \leq \mathrm{f}(\mathrm{x}) \leq 1 \\ \mathrm{f}(\mathrm{x})+2 & ; & 1<\mathrm{f}(\mathrm{x})<2 \\ 4-\mathrm{f}(\mathrm{x}) & ; & 2 \leq \mathrm{f}(\mathrm{x}) \leq 4\end{array}\right.$

$$
=\left\{\begin{array}{lll}
1-1-\mathrm{x} & ; & 0 \leq \mathrm{x} \leq 1 \cap 1 \leq 1-\mathrm{x} \leq 1 \Rightarrow 0 \leq \mathrm{x} \leq 1 \\
1-\mathrm{x}-2 & ; & 1<\mathrm{x}<2 \cap 0 \leq \mathrm{x}+2 \leq 1 \Rightarrow-2 \leq \mathrm{x} \leq-1 \\
1-4+\mathrm{x} & ; & 2 \leq \mathrm{x} \leq 4 \cap 0 \leq 4-\mathrm{x} \leq 1 \Rightarrow 3 \leq \mathrm{x} \leq 4 \\
1-\mathrm{x}+2 & ; & 0 \leq \mathrm{x} \leq 1 \cap 1<1-\mathrm{x}<2 \Rightarrow-1<\mathrm{X}<0 \\
\mathrm{x}+2+2 & ; & 1<\mathrm{x}<2 \cap 1<\mathrm{x}+2<2 \Rightarrow-1<\mathrm{x}<0 \\
4-\mathrm{x}+2 & ; & 2 \leq \mathrm{x} \leq 4 \cap 1<4 \mathrm{x}<2 \Rightarrow 2<\mathrm{x}<3 \\
4-1+\mathrm{x} & ; & 0 \leq \mathrm{x} \leq 1 \cap 2 \leq 1-\mathrm{x} \leq 4 \Rightarrow-3 \leq \mathrm{x} \leq-1 \\
4-\mathrm{x}-2 & ; & 1<\mathrm{x}<2 \cap 2 \leq 4 \Rightarrow 0 \leq \mathrm{x} \leq 2 \\
4-4+\mathrm{x} & ; & 2 \leq \mathrm{x} \leq 4 \cap 2 \leq 4-\mathrm{x} \leq 4 \Rightarrow 0 \leq \mathrm{x} \leq 2
\end{array}\right.
$$

$$
=\left\{\begin{array}{ccc}
\mathrm{x} & ; & 0 \leq \mathrm{x} \leq 1 \\
\mathrm{x}-3 & ; & 3 \leq \mathrm{x} \leq 4 \\
-\mathrm{x}+6 & ; & 2<\mathrm{x}<3 \\
-\mathrm{x}+2 & ; & 1<\mathrm{x}<2
\end{array}\right.
$$

$f(f(x))=\left\{\begin{array}{cll}x & ; & 0 \leq x \leq 1 \\ -x-2 & ; & 1<x<2 \\ x & ; & x=2 \\ -x+6 & ; & 2<x<3 \\ x-3 & ; & 3 \leq x \leq 4\end{array}\right.$

$\therefore \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1 \&$ discunt.
at $\mathrm{x}=2,3 \&$ non diff. at $\mathrm{x}=1,2,3$

15 Let f be a function that is differentiable every where and that has the following properties:
(i) $\mathrm{f}(\mathrm{x}+\mathrm{h})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{h})$
(ii) $f(x)>0$ for all real x.
(iii) $f^{\prime}(0)=-1$

Use the definition of derivative to find $f^{\prime}(\mathrm{x})$ in terms of $f(\mathrm{x})$.

Sol. $f(x+h)=f(x) . f(h)$

$$
\left\lvert\, \begin{aligned}
& \mathrm{x}=0 \\
& \mathrm{~h}=0
\end{aligned} \quad \mathrm{f}(0)(\mathrm{f}(0)-1)=0 \Rightarrow \mathrm{f}(0)=1\right.
$$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{h}}
$$

$$
=\lim _{h \rightarrow 0} \frac{(x) \cdot f(h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(h)-1}{h} f(x)
$$

$$
\Rightarrow f^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(\mathrm{~h})-\mathrm{f}(0)}{\mathrm{h}} \mathrm{f}(\mathrm{x})
$$

$$
=\mathrm{f}^{\prime}(0) \mathrm{f}(\mathrm{x})
$$

$$
\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-\mathrm{f}(\mathrm{x})
$$

$$
\therefore \mathrm{f}^{\prime}(\mathrm{x})=-\mathrm{f}(\mathrm{x})
$$

16 Discuss the continuity \& the derivability of ' f ' where $f(x)=$ degree of $\left(u^{x^{2}}+u^{2}+2 u-3\right)$ at $x=\sqrt{ }$.
Sol. $f(x)=$ degree of $\left(u^{x^{2}}+u^{2}+2 u-3\right)$ at $x=\sqrt{2}$

$$
\left.\left.\begin{array}{rl}
& = \begin{cases}2 & x \leq \sqrt{2} \\
x^{2} & ;\end{cases} \\
f^{\prime}(\sqrt{2}) & =\operatorname{Lim}_{h \rightarrow 0} \frac{f(h+\sqrt{2})-f(\sqrt{2})}{h}
\end{array}\right\} \begin{array}{l}
\operatorname{Lim}_{h \rightarrow 0^{+}} \frac{f(h+\sqrt{2})-f(\sqrt{2})}{h} \\
\operatorname{Lim}_{h \rightarrow 0^{-}} \frac{f(h+\sqrt{2})-f(\sqrt{2})}{h}
\end{array}\right\} \begin{aligned}
& \operatorname{Lim}_{h \rightarrow 0^{+}} \frac{(h+\sqrt{2})^{2}-2}{h} \\
& \operatorname{Lim}_{h \rightarrow 0^{-}} \frac{2-2}{h}
\end{aligned}
$$

$$
=\left\{\begin{array}{l}
\operatorname{Lim}_{h \rightarrow 0^{+}} \frac{2+2 \sqrt{2} h+h^{2}-2}{h} \\
0
\end{array}\right.
$$

$$
\begin{aligned}
& =\left\{\begin{array}{c}
\operatorname{Lim}_{h \rightarrow 0^{+}} \frac{h^{2}+2 \sqrt{2} h}{h} \\
0
\end{array}\right. \\
& =\left\{\begin{array}{c}
\operatorname{Lim}_{h \rightarrow 0^{+}}(h+2 \sqrt{2}) \\
0
\end{array}\right. \\
& =\left\{\begin{array}{c}
2 \sqrt{2} \\
0
\end{array}\right.
\end{aligned}
$$

$\therefore \mathrm{f}^{\prime}\left(\sqrt{2}^{-}\right) \neq \mathrm{f}^{\prime}\left(\sqrt{2}^{+}\right)$
Hance $\mathrm{f}(\mathrm{x})$ is non differentiable at $\mathrm{x}=\sqrt{2}$

$$
\begin{aligned}
\operatorname{Limf}_{x \rightarrow \sqrt{2}}(x) & =\operatorname{Lim}_{x \rightarrow \sqrt{2}} x^{2} \\
& =2 \\
& =f(\sqrt{2})
\end{aligned}
$$

$\Rightarrow \mathrm{f}(\sqrt{2})=\operatorname{Lim}_{\mathrm{x} \rightarrow \sqrt{2}} \mathrm{f}(\mathrm{x})$
Hance $f(x)$ is confinous at $x=\sqrt{2}$

17 Let $f(\mathrm{x})$ be a function defined on $(-\mathrm{a}, \mathrm{a})$ with $\mathrm{a}>0$. Assume that $f(\mathrm{x})$ is continuous at $\mathrm{x}=0$ and $\operatorname{Lim}_{\mathrm{x} \rightarrow 0} \frac{f(\mathrm{x})-f(\mathrm{kx})}{\mathrm{x}}=\alpha$, where $\mathrm{k} \in(0,1)$ then compute $\mathrm{f}^{\prime}\left(0^{+}\right)$and $\mathrm{f}^{\prime}\left(0^{-}\right)$, and comment upon the differentiability of f at $\mathrm{x}=0$.

Sol. $\quad \because \operatorname{Lim}_{x \rightarrow 0} \frac{f(x)-f(k \alpha)}{x}=\alpha$
$\Rightarrow \operatorname{Lim}_{x \rightarrow 0} \frac{f(x)-f(0)+f(0)-(k x)}{x}=\alpha$
$\Rightarrow \operatorname{Lim}_{x \rightarrow 0} \frac{f(x)-f(0)-f(k x)+f(0)}{x}=\alpha$
$\Rightarrow \operatorname{Lim}_{x \rightarrow 0}\left(\frac{f(x)-f(0)}{x}-\frac{f(k x)-f(0)}{x}\right)=\alpha$
$\Rightarrow\left(\operatorname{Lim}_{x \rightarrow 0} \frac{f(x)-f(0)}{x}\right)-\left(\operatorname{Lim}_{x \rightarrow 0} \frac{f(k x)-f(0)}{k x}\right) k=\alpha$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x}-\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{f(k x)-f(0)}{k x} \cdot k=\alpha \\
\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}-\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{f(k x)-f(0)}{k x} \cdot k=\alpha
\end{array}\right. \\
& =\left\{\begin{array}{l}
f^{\prime}\left(0^{-}\right)-k f^{\prime}\left(0^{-}\right)=\alpha \\
f^{\prime}\left(0^{+}\right)-k f^{\prime}\left(0^{+}\right)=\alpha
\end{array}\right. \\
& =\left\{\begin{array}{l}
(1-k) f^{\prime}\left(0^{-}\right)=\alpha \\
(1-k) f^{\prime}\left(0^{+}\right)=\alpha
\end{array}\right. \\
& =\left\{\begin{array}{l}
f^{\prime}\left(0^{-}\right)=\frac{\alpha}{1-k} \\
f^{\prime}\left(0^{+}\right)=\frac{\alpha}{1-k} \\
\therefore f^{\prime}(0)=f^{\prime}\left(0^{-}\right)=f^{\prime}\left(0^{+}\right)=\frac{\alpha}{1-k}
\end{array}\right.
\end{aligned}
$$

18 A derivable function $f: \mathrm{R}^{+} \rightarrow \mathrm{R}$ satisfies the condition $f(\mathrm{x})-f(\mathrm{y}) \geq \ln (\mathrm{x} / \mathrm{y})+\mathrm{x}-\mathrm{y}$ for every $x, y \in R^{+}$. If g denotes the derivative of f then compute the value of the sum $\sum_{n=1}^{100} g\left(\frac{1}{n}\right)$.
Sol. $\quad f(x)-f(x) \geq \ln (x / y)+x-y$
$\Rightarrow \mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y}) \geq \ln \mathrm{x}-\ln \mathrm{y}+\mathrm{x}-\mathrm{y}$
$\Rightarrow \frac{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})}{\mathrm{x}-\mathrm{y}} \geq \frac{\ell \mathrm{nx}-\mathrm{my}}{\mathrm{x}-\mathrm{y}}+1 \quad[$ for $\mathrm{x} \neq \mathrm{y}]$
$\Rightarrow \lim _{x \rightarrow y} \frac{f(x)-t(y)}{x-y} \geq \lim _{x \rightarrow y} \frac{\ell n x-\ell n y}{x-y}+1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(h+y)-f(y)}{h} \geq \lim _{h \rightarrow 0} \frac{m\left(\frac{y+h}{y}\right)}{h}+1$
$\Rightarrow f^{\prime}(y) \geq \lim _{h \rightarrow 0} \ln \left(1+\frac{h}{y}\right)^{1 / h}+1$

19 If $y=\frac{x^{2}}{2}+\frac{1}{2} x \sqrt{x^{2}+1}+\ln \sqrt{x+\sqrt{x^{2}+1}}$ prove that $2 y=x y^{\prime}+\ln y^{\prime}$. where ' denotes the derivative.
[Sol. $\quad y=\frac{x^{2}}{2}+\frac{1}{2} x \sqrt{x^{2}+1}+\ln \sqrt{x+\sqrt{x^{2}+1}}$

$$
\begin{aligned}
\mathrm{y}^{\prime} & =\mathrm{x}+\frac{1}{2}\left[\frac{\mathrm{x}^{2}}{\sqrt{\mathrm{x}^{2}+1}}+\sqrt{\mathrm{x}^{2}+1}\right]+\frac{1}{2 \sqrt{\mathrm{x}^{2}+1}} \\
& =\mathrm{x}+\frac{1}{2}\left[\frac{2 \mathrm{x}^{2}+1}{\sqrt{\mathrm{x}^{2}+1}}\right]+\frac{1}{2 \sqrt{\mathrm{x}^{2}+1}} \\
& =\mathrm{x}+\frac{1}{2 \sqrt{\mathrm{x}^{2}+1}}\left[2\left(\mathrm{x}^{2}+1\right)\right] \\
y^{\prime} & =x+\sqrt{\mathrm{x}^{2}+1}
\end{aligned}
$$

$$
\text { Also } 2 y=x^{2}+x \sqrt{x^{2}+1}+\ln \left(x+\sqrt{x^{2}+1}\right)
$$

$$
\left.=x\left(x+\sqrt{x^{2}+1}\right)+\ln \left(x+\sqrt{x^{2}+1}\right)=x y^{\prime}+\ln \mathrm{y}^{\prime} \text { Hence proved }\right]
$$

20 If $y=\sec 4 x$ and $x=\tan ^{-1}(t)$, prove that $\frac{d y}{d t}=\frac{16 t\left(1-t^{4}\right)}{\left(1-6 t^{2}+t^{4}\right)^{2}}$.
[Sol. $y=\frac{1}{\cos 4 x}=\frac{1+\tan ^{2} 2 x}{1-\tan ^{2} 2 x}$
using $\tan \mathrm{x}=\mathrm{t}$ (given)
$\tan 2 \mathrm{x}=\frac{2 \mathrm{t}}{1-\mathrm{t}^{2}}$
substituting in (1)

$$
\begin{aligned}
& y=\frac{1+\frac{4 t^{2}}{\left(1-t^{2}\right)^{2}}}{1-\frac{4 t^{2}}{\left(1-t^{2}\right)^{2}}}=\frac{\left(1+t^{2}\right)^{2}}{\left(1-t^{2}\right)^{2}-4 t^{2}}=\frac{\left(1+t^{2}\right)^{2}}{1-6 t^{2}+t^{4}} \\
& \frac{d y}{d t}=\frac{\left(1-6 t^{2}+t^{4}\right) \cdot 2\left(1+t^{2}\right) \cdot 2 t-\left(1+t^{2}\right)\left(4 t^{3}-12 t\right)}{\left(1-6 t^{2}+t^{4}\right)^{2}} \\
&\left.=\frac{4 t\left(1+t^{2}\right)\left[\left(1-6 t^{2}+t^{4}\right)-\left(1+t^{2}\right)\left(t^{2}-3\right)\right]}{\left(1-\left(t^{2}+t^{4}\right)^{2}\right)}=\frac{4 t\left(1+t^{2}\right)\left(1-t^{2}\right)}{\left(1-6 t^{2}+t^{4}\right)^{2}}=\frac{4 t\left(1-t^{4}\right)}{\left(1-6 t^{2}+t^{4}\right)^{2}}\right]
\end{aligned}
$$

21 If $\mathrm{x}=\frac{1+\operatorname{lnt}}{\mathrm{t}^{2}}$ and $\mathrm{y}=\frac{3+2 \ln \mathrm{t}}{\mathrm{t}}$. Show that $\mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}+1$.
[Sol. $\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{t}-(1+\operatorname{lnt}) 2 \mathrm{t}}{\mathrm{t}^{4}}=\frac{\mathrm{t}(1-2-\ln \mathrm{t})}{\mathrm{t}^{4}}=-\frac{(1+2 \ln \mathrm{t})}{\mathrm{t}^{3}}$
$\frac{d y}{d t}=\frac{t\left(\frac{2}{t}\right)-(3+2 \ln t)}{t^{2}}=-\frac{(1+2 \ln t)}{t^{2}}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1+2 \ln \mathrm{t}}{\mathrm{t}^{2}} \cdot \frac{\mathrm{t}^{3}}{1+2 \ln \mathrm{t}}=\mathrm{t}$
Now L.H.S. $=\frac{3+2 \operatorname{lnt}}{t} . \mathrm{t}=3+2 \operatorname{lnt}$

$$
\begin{aligned}
& \text { R.H.S. }=\frac{2(1+\ln \mathrm{t})}{\mathrm{t}^{2}} \cdot \mathrm{t}^{2}+1=3+2 \ln 2 \\
& \Rightarrow \quad \text { L.H.S. }=\text { R.H.S. }]
\end{aligned}
$$

22 If $y=1+\frac{x_{1}}{x-x_{1}}+\frac{x_{2} \cdot x}{\left(x-x_{1}\right)\left(x-x_{2}\right)}+\frac{x_{3} \cdot x^{2}}{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}+\ldots$. . upto (n+1) terms then prove that

$$
\frac{d y}{d x}=\frac{y}{x}\left[\frac{x_{1}}{x_{1}-x}+\frac{x_{2}}{x_{2}-x}+\frac{x_{3}}{x_{3}-x}+\ldots+\frac{x_{n}}{x_{n}-x}\right]
$$

[Sol. adding term by term

$$
\begin{gathered}
y=\frac{x^{n}}{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots .\left(x-x_{n}\right)} \\
y=\frac{x}{\left(x-x_{1}\right)} \cdot \frac{x}{\left(x-x_{2}\right)} \cdot \frac{x}{\left(x-x_{3}\right)} \ldots \ldots \ldots \cdot \frac{x}{\left(x-x_{n}\right)} \\
\ln y=\ln \frac{x}{\left(x-x_{1}\right)}+\ln \frac{x}{\left(x-x_{2}\right)}+\ln \frac{x}{\left(x-x_{3}\right)}+\ldots \ldots \ldots .+\ln \frac{x}{\left(x-x_{n}\right)} \\
\quad \operatorname{now} D\left(\frac{x}{x-x_{n}}\right)=\frac{x-x_{n}}{x}\left(\frac{\left(x-x_{n}\right)-x}{\left(x-x_{n}\right)^{2}}\right)=\frac{1}{x}\left(\frac{x_{n}}{x_{n}-x}\right)
\end{gathered}
$$

Hence $\frac{1}{y} \frac{d y}{d x}=\frac{1}{x}\left[\frac{x_{1}}{x_{1}-x}+\frac{x_{2}}{x_{2}-x}+\ldots .+\frac{x_{n}}{x_{n}-x}\right]$

$$
\left.\frac{d y}{d x}=\frac{y}{x}\left[\frac{x_{1}}{x_{1}-x}+\frac{x_{2}}{x_{2}-x}+\ldots . .+\frac{x_{n}}{x_{n}-x}\right]\right]
$$

23 Suppose $\mathrm{f}(\mathrm{x})=\tan \left(\sin ^{-1}(2 \mathrm{x})\right)$
(a) Find the domain and range of f.
(b) Express $\mathrm{f}(\mathrm{x})$ as an algebaric function of x .
(c) Find $f^{\prime}(1 / 4) . \quad\left[\right.$ Ans. (a) $\left(-\frac{1}{2}, \frac{1}{2}\right),(-\infty, \infty) ;$ (b) $f(x)=\frac{2 \mathrm{x}}{\sqrt{1-4 \mathrm{x}^{2}}} ;$ (c) $\frac{16 \sqrt{3}}{9}$]
[Sol. $\quad \mathrm{f}(\mathrm{x})=\tan \left(\sin ^{-1}(2 \mathrm{x})\right)$
(a) for f to be well defined
$-1<2 \mathrm{x}<1 \quad \Rightarrow \quad-\frac{1}{2}<\mathrm{x}<\frac{1}{2} \quad\left[\because\right.$ for $\mathrm{x}= \pm \frac{1}{2}, \tan \frac{\pi}{2}$ is not defined $]$
Hence domain is $\left(-\frac{1}{2}, \frac{1}{2}\right)$
for $\mathrm{x} \in\left(-\frac{1}{2}, \frac{1}{2}\right), \sin ^{-1} 2 \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ hence for $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ can take all real values.
Hence range of f is $x \in R$
(b) $f(x)=\tan \theta$ where $\sin ^{-1}(2 x)=\theta \Rightarrow \sin \theta=2 x$
$f(x)=\frac{2 x}{\sqrt{1-4 x^{2}}}$

(c) $\quad f^{\prime}(x)=\frac{\sec ^{2}\left(\sin ^{-1}(2 x)\right)}{\sqrt{1-4 x^{2}}} \cdot 2$
$\left.\mathrm{f}^{\prime}\left(\frac{1}{4}\right)=\frac{2 \sec ^{2}\left(\sin ^{-1}\left(\frac{1}{2}\right)\right)}{\sqrt{1-\frac{1}{4}}}=\frac{2 \times 2}{\sqrt{3}} \cdot \frac{4}{3}=\frac{16}{3 \sqrt{3}}=\frac{16 \sqrt{3}}{9} \quad\right]$
24 If $x=\tan \frac{y}{2}-\ln \left[\frac{\left(1+\tan \frac{y}{2}\right)^{2}}{\tan \frac{y}{2}}\right]$. Show that $\frac{d y}{d x}=\frac{1}{2} \sin y(1+\sin y+\cos y)$.
Sol Put $\tan \frac{y}{2}=t \quad \therefore \quad \sin y=\frac{2 t}{1+t^{2}}, \cos y=\frac{1-t^{2}}{1+t^{2}}$
$\therefore \quad 1+\sin y+\cos y=\frac{2+2 t}{1+t^{2}}$
and $\quad y=2 \tan ^{-1} t$
$\therefore \quad \frac{d y}{d t}=\frac{2}{1+t^{2}}$
Now $\quad x=t-2 \log (1+t)+\log t$
$\therefore \quad \frac{d x}{d t}=1-\frac{2}{1+t}+\frac{1}{t}=\frac{t^{2}+1}{t(t+1)}$
$\therefore \quad \frac{d y}{d x}=\frac{d y}{d t}+\frac{d x}{d t}=\frac{2}{1+t^{2}} \cdot \frac{t^{2}+t}{1+t^{2}}, \quad$ by (2) \& (3)
or $\quad \frac{d y}{d x}=\frac{2 t}{1+t^{2}} \cdot \frac{1}{2} \frac{2 t+2}{1+t^{2}}$

$$
=\frac{1}{2} \sin y(1+\sin y+\cos y), \text { by (1) }
$$

25 If $y=\arccos \sqrt{\frac{\cos 3 x}{\cos ^{3} x}}$ then show that $\frac{d y}{d x}=\sqrt{\frac{6}{\cos 2 x+\cos 4 x}}, \sin x>0$.
Sol We have,

$$
\begin{array}{ll}
& y=\cos ^{-1} \sqrt{\frac{\cos 3 x}{\cos ^{3} x}} \\
\therefore \quad & \cos y=\sqrt{\frac{\cos 3 x^{\cos ^{3} x}}{}} \\
\Rightarrow \quad \cos y=\sqrt{\frac{4 \cos ^{3} x-3 \cos x}{\cos ^{3} x}} \\
\Rightarrow \quad & \cos y=\sqrt{4-3 \sec ^{2} x}
\end{array}
$$

$\Rightarrow \quad \cos ^{2} y=4-3\left(1+\tan ^{2} x\right)$
$\Rightarrow \quad 1-\cos ^{2} y=3 \tan ^{2} x$
$\Rightarrow \quad \sin ^{2} y=3 \tan ^{2} x$
$\Rightarrow \quad \sin y=\sqrt{3} \tan x$
Differentiating both side with respect to x, we get, $\cos y \frac{d y}{d x}=\sqrt{3} \sec ^{2} x$
$\Rightarrow \quad \frac{d y}{d x}=\frac{\sqrt{3}}{\cos y \cos ^{2} x}$
$\Rightarrow \quad \frac{d y}{d x}=\frac{\sqrt{3}}{\cos ^{2} x} \sqrt{\frac{\cos ^{3} x}{\cos 3 x}}=\sqrt{\frac{3}{\cos x \cos 3 x}}$
Hence Proved $\frac{d y}{d x}=\sqrt{\frac{6}{\cos 2 x+\cos 4 x}}, \sin x>0$.

26 $\sin x+a_{2} \sin 2 x+\ldots \ldots+a_{n} \sin n x|\leq|\sin x|$ for $x \in R$,
then $\left|\mathrm{a}_{1}+2 \mathrm{a}_{1}+3 \mathrm{a}_{3}+\ldots . .+n \mathrm{na}_{\mathrm{n}}\right| \leq 1$
[Sol. Let $\mathrm{f}(\mathrm{x})=\mathrm{a}_{1} \sin \mathrm{x}+\mathrm{a}_{2} \sin 2 \mathrm{x}+\ldots \ldots \ldots .+\mathrm{a}_{\mathrm{n}} \sin \mathrm{nx}$

$$
\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{a}_{1} \cos \mathrm{x}+2 \mathrm{a}_{2} \cos 2 \mathrm{x}+\ldots . .+n \mathrm{a}_{\mathrm{n}} \cos \mathrm{nx}
$$

$$
\mathrm{f}^{\prime}(0)=\mathrm{a}_{1}+2 \mathrm{a}_{2}+\ldots \ldots .+\mathrm{na}_{\mathrm{n}}
$$

Hence TPT $\left|\mathrm{f}^{\prime}(0)\right| \leq 1$
Given $|f(x)| \leq|\sin x|$ for $x \in R$

$$
\left.\begin{array}{l}
f^{\prime}(0)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\
f^{\prime}(0)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(h)}{h} \quad(\operatorname{as} f(0)=0) \\
\left|f^{\prime}(0)\right|=\operatorname{Lim}_{h \rightarrow 0}\left|\frac{f(h)}{h}\right| \leq \operatorname{Lim}_{h \rightarrow 0}\left|\frac{\sin h}{h}\right|=1
\end{array} \quad[\text { as }|f(x)| \leq|\sin x|] \quad\right] .
$$

Hence $\left|\mathrm{f}^{\prime}(0)\right| \leq 1 \quad$]

27 Show that the substitution $z=\ln \left(\tan \frac{x}{2}\right)$ changes the equation $\frac{d^{2} y}{d x^{2}}+\cot x \frac{d y}{d x}+4 y \operatorname{cosec}^{2} x=0$ to $\left(d^{2} y / d z^{2}\right)+4 y=0$.

Sol Since $x=\ln \tan \left(\frac{x}{2}\right)$
$\therefore \quad \frac{d z}{d x}=\operatorname{cosec} x \quad$ or $\quad \frac{d x}{d z}=\sin x$
Now, $\frac{d y}{d x}=\frac{d y}{d z} \cdot \frac{d z}{d x}=\operatorname{cosec} x \cdot \frac{d y}{d z} \quad[$ From (1)]
$\therefore \quad \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\operatorname{cosec} x \frac{d y}{d z}\right)$

$$
\begin{align*}
& =\operatorname{cosec} x \frac{d}{d x}\left(\frac{d y}{d z}\right)+\frac{d y}{d z}(-\operatorname{cosec} x \cot x) \\
& =\operatorname{cosec} x \cdot \frac{d}{d z}\left(\frac{d y}{d z}\right) \cdot \frac{d z}{d x}-\operatorname{cosec} x \cot x \frac{d y}{d z} \\
& =\operatorname{cosec} x \frac{d^{2} y}{d z^{2}}-\operatorname{cosec} x \cot x \frac{d y}{d z} \tag{3}
\end{align*}
$$

[From (1)]

Butgiven

$$
\frac{d^{2} y}{d x^{2}}+\cot x \frac{d y}{d x}+4 y \operatorname{cosec}{ }^{2} x=0
$$

$\operatorname{cosec}{ }^{2} x \frac{d^{2} y}{d z^{2}}-\operatorname{cosec} x \cot x \frac{d y}{d z}+\cot x \operatorname{cosec} x \frac{d y}{d z}+4 y \operatorname{cosec}^{2} x=0 \quad[$ From (2) and (3)]
$\Rightarrow \quad \operatorname{cosec} 2{ }^{2} x \frac{d^{2} y}{d z^{2}}+4 y \operatorname{cosec}^{2} x=0 \quad$ or $\quad \frac{d^{2} y}{d z^{2}}+4 y=0$
$28 \quad$ Let $f(\mathrm{x})=\left[\begin{array}{ll}\mathrm{xe}^{\mathrm{x}} & \mathrm{x} \leq 0 \\ \mathrm{x}+\mathrm{x}^{2}-\mathrm{x}^{3} & \mathrm{x}>0\end{array}\right.$ then prove that
(a) $\quad f$ is continuous and differentiable for all x . (b) f^{\prime} 'is continuous and differentiable for all x .
[Sol. $f^{\prime}(x)=\left[\begin{array}{ll}x^{x}+e^{x}=e^{x}(x+1), & x<0 \\ 1+2 x-3 x^{2} & x>0\end{array}\right.$
$\operatorname{Lim}_{x \rightarrow 0^{-}} \mathrm{f}^{\prime}(\mathrm{x})=1 ; \operatorname{Lim}_{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}^{\prime}(\mathrm{x})=1$
hence $\mathrm{f}(\mathrm{x})$ is continuous hence f is continuous and differentiable at $\mathrm{x}=0$
Again $f^{\prime \prime}(x)=\left[\begin{array}{ll}e^{x}+(x+1) e^{x}=e^{x}(x+2), & x<0 \\ 2-6 x & x>0\end{array}\right.$
$\operatorname{Lim}_{\mathrm{x} \rightarrow 0^{+}} f^{\prime \prime}(\mathrm{x})=\operatorname{Lim}_{\mathrm{x} \rightarrow 0^{-}} f^{\prime \prime}(\mathrm{x})=2 \quad \Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x})$ is also continuous and differentiable]

29 Let $f(x)=\left|\begin{array}{ccc}a+x & b+x & c+x \\ \ell+x & m+x & n+x \\ p+x & q+x & r+x\end{array}\right|$. Show that $f^{\prime \prime}(x)=0$ and that $f(x)=f(0)+k x$ where k denotes the sum of all the co-factors of the elements in $f(0)$.
[Hint:

$$
f^{\prime}(x)=\left|\begin{array}{ccc}
1 & 1 & 1 \\
\ell+x & m+x & n+x \\
p+x & q+x & r+x
\end{array}\right|+\left|\begin{array}{ccc}
a+x & b+x & c+x \\
1 & 1 & 1 \\
p+x & q+x & r+x
\end{array}\right|+\left|\begin{array}{ccc}
a+x & b+x & c+x \\
\ell+x & m+x & n+x \\
1 & 1 & 1
\end{array}\right|
$$

$\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ (obviously - two identical rows)
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{k} \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{kx}+\mathrm{x}, \mathrm{f}(0)=\mathrm{c}$
$\Rightarrow \quad \mathrm{f}(\mathrm{x})=\mathrm{f}(0)+\mathrm{kx}$. Note that $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{k}$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{f}^{\prime}(0)=\mathrm{k}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
\ell & \mathrm{~m} & \mathrm{n} \\
\mathrm{p} & \mathrm{q} & \mathrm{r}
\end{array}\right|+\left|\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
1 & 1 & 1 \\
\mathrm{p} & \mathrm{q} & \mathrm{r}
\end{array}\right|+\left|\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\ell & \mathrm{~m} & \mathrm{n} \\
1 & 1 & 1
\end{array}\right| \\
& \left.=1_{11}+\mathrm{c}_{12}+\mathrm{c}_{13}\right)+\left(\mathrm{c}_{21}+\mathrm{c}_{22}+\mathrm{c}_{23}\right)+\left(\mathrm{c}_{31}+\mathrm{c}_{32}+\mathrm{c}_{33}\right) \\
& =\quad \text { sum of co-factors of elements } \mathrm{f}(0)]
\end{aligned}
$$

If $\mathrm{Y}=\mathrm{sX}$ and $\mathrm{Z}=\mathrm{tX}$, where all the letters denotes the functions of x and suffixes denotes the differentiation w.r.t. x then prove that $\left|\begin{array}{ccc}X & Y & Z \\ X_{1} & Y_{1} & Z_{1} \\ X_{2} & Y_{2} & Z_{2}\end{array}\right|=X^{3}\left|\begin{array}{cc}s_{1} & t_{1} \\ s_{2} & t_{2}\end{array}\right|$

Sol \quad Since $Y=s X$ and $Z=t X$
$\therefore \quad Y_{1}=s X_{1}+X s_{1}$ and $Z_{1}=t X_{1}+X t_{1}$
$\Rightarrow \quad Y_{2}=s X_{2}+X s_{2}+2 s_{1} X_{1}$ and $Z_{2}=t X_{2}+X t_{2}+2 t_{1} X_{1}$
L.H.S $=\left|\begin{array}{lll}X & Y & Z \\ X_{1} & Y_{1} & Z_{1} \\ X_{2} & Y_{2} & Z_{2}\end{array}\right|$

$$
\left|\begin{array}{ccc}
X & s X & t X \\
X_{1} & s X_{1}+X s_{1} & t X_{1}+X t_{1} \\
X_{2} & s X_{2}+X s_{2}+2 s_{1} X_{1} & t X_{2}+X t_{2}+2 t_{1} X_{1}
\end{array}\right| \quad \text { [From (1),(2) and (3)] }
$$

Applying $C_{2} \rightarrow C_{2}-s C_{1}$ and $C_{3} \rightarrow C_{3}-t C_{1}$

$$
=\left|\begin{array}{ccc}
X & 0 & 0 \\
X_{1} & X s_{1} & X t_{1} \\
X_{2} & X s_{2}+2 s_{1} X_{1} & X t_{2}+2 t_{1} X_{1}
\end{array}\right|
$$

Expand w.r.t. first row, then

$$
\begin{aligned}
& =X\left|\begin{array}{cc}
X s_{1} & X t_{1} \\
X s_{2}+2 s_{1} X_{1} & X t_{2}+2 t_{1} X_{1}
\end{array}\right| \\
& =X^{3}\left|\begin{array}{cc}
s_{1} & t_{1} \\
X s_{2}+2 s_{1} X_{1} & X t_{2}+2 t_{1} X_{1}
\end{array}\right|
\end{aligned}
$$

Applying $R_{2} \rightarrow R_{2}-2 X_{1} R_{1}=X^{2}\left|\begin{array}{cc}s_{1} & t_{1} \\ X s_{2} & X t_{2}\end{array}\right|=X^{3}\left|\begin{array}{ll}s_{1} & t_{1} \\ s_{2} & t_{2}\end{array}\right|=$ R.H.S.

28 A function $f: R \rightarrow R$ is defined as $f(x)=\lim _{n \rightarrow \infty} \frac{a x^{2}+b x+c+e^{n x}}{1+c \cdot e^{n x}}$ where f is continuous on R. Find the value of a , band c .

Sol. $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{a \mathrm{x}^{2}+b \mathrm{x}+\mathrm{c}+\mathrm{e}^{\mathrm{nx}}}{1+\mathrm{c} \cdot \mathrm{e}^{\mathrm{nx}}}$

$$
= \begin{cases}\lim _{n \rightarrow \infty} \frac{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}+\mathrm{e}^{\mathrm{nx}}}{1+c \cdot e^{\mathrm{nx}}} & ; x<0 \\ \lim _{n \rightarrow \infty} \frac{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}+\mathrm{e}^{\mathrm{nx}}}{1+c \cdot \mathrm{e}^{\mathrm{xn}}} & ; x=0 \\ \lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}+\mathrm{e}^{\mathrm{nx}}}{1+\mathrm{c} \cdot \mathrm{e}^{\mathrm{xn}}} & ; x>0\end{cases}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{ccc}
\frac{a x^{2}+b x+c+0}{1+c .0} & ; & x<0\left(\lim _{n \rightarrow \infty} e^{n x}=0\right) \\
\frac{c+1}{c+1} & ; & x=0 \\
\lim _{n \rightarrow \infty} \frac{\mathrm{ax}^{2}}{\mathrm{e}^{n x}+\frac{b x}{e^{n x}}+\frac{c}{e^{n x}}+1} & ; & x>0 \\
\frac{1+c}{n x} & & \\
\left(\lim _{h \rightarrow \infty} e^{h x}=\infty\right)
\end{array}\right. \\
& =\left\{\begin{array}{ccc}
\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c} & ; & \mathrm{x}<0 \\
1 & ; & x=0 \\
\frac{1}{c} & ; & x>0
\end{array}\right.
\end{aligned}
$$

since $f(x)$ is continuous function $\forall x \in R$
$\therefore \lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 0^{-}} \mathrm{f}(\mathrm{x})=\mathrm{f}(0)$
$\Rightarrow \lim _{x \rightarrow 0^{+}}\left(\frac{1}{c}\right)=\lim _{x \rightarrow 0^{-}}\left(a x^{2}+b x+c\right)=1 \quad \Rightarrow \lim _{x \rightarrow 0^{+}} \frac{1}{c}=1 \& \lim _{x \rightarrow 0^{-}}\left(a x^{2}+b x+c\right)=1$
$\Rightarrow \frac{1}{c}=1 \quad \Rightarrow \mathrm{a}-0+3.0+\mathrm{c}=1$
$\therefore \mathrm{c}=1 \quad \Rightarrow \mathrm{c}=1$
$\therefore \mathrm{c}=1, \mathrm{a}, \mathrm{b} \in \mathrm{R}$
29 Discuss the continuity of fin $[0,2]$ where $f(x)=\left[\begin{array}{lll}|4 x-5|[x] & \text { for } & x>1 \\ {[\cos \pi x]} & \text { for } & x \leq 1\end{array}\right.$; where $[x]$ is the greatest integer not greater than x .
Sol. $\quad f(x)=\cos \pi x$
$[\cos \pi x]=\left\{\begin{array}{ccc}1 & ; & x=0 \\ 0 & ; & x<x \leq \frac{1}{2} \\ -1 & ; & \frac{1}{2}<x \leq 1\end{array}\right.$

$|4 x-5|[x]=\left\{\begin{array}{cc}|4 x-5| ; & 1<x<2 \\ 6 \quad ; & x=2\end{array}=\left\{\begin{array}{cc}(4 x-5) & ; 1<x<\frac{5}{4} \\ 4 x-5 & ; \\ 6 & \frac{5}{4} \leq x<z \\ 6 & ;\end{array}\right.\right.$
$f(x)=\left\{\begin{array}{ccc}1 & ; & x=0 \\ 0 & ; & 0<x \leq \frac{1}{2} \\ -1 & ; & \frac{1}{2}<x \leq 1 \\ -(4 x-5) & ; & 1<x<\frac{5}{4} \\ 4 x-5 & ; & \frac{5}{4} \leq x<2 \\ 6 & ; & x=2\end{array}\right.$

function dis at $0,0, \frac{1}{2}, 1,2$

30 If $f(x)=x+\{-x\}+[x]$, where $[x]$ is the integral part \& $\{x\}$ is the fractional part of x. Discuss the continuity of f in $[-2,2]$.
Sol. $f(x)=x+\{-x\}+[x]$
$\because\{x\}=x-[x]$
$\{-x\}=-x-[-x]$
$\mathrm{f}(\mathrm{x})=\mathrm{x}+(-\mathrm{x}-[-\mathrm{x}]+[\mathrm{x}])$
$\mathrm{f}(\mathrm{x})=[\mathrm{x}]-[-\mathrm{x}]<\begin{aligned} & \mathrm{x}-(-\mathrm{x})=2 \mathrm{x} ; \mathrm{x} \in \mathrm{I} \\ & {[\mathrm{x}]-(-[\mathrm{x}]-1)=1-2[\mathrm{x}] ; \mathrm{x} \notin \mathrm{I}}\end{aligned}$
$f(x)=\left\{\begin{array}{cll}2 x & ; & x \in I \\ 1-2[x] & ; & x \notin I\end{array}\right.$

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}
-4 & ; & \mathrm{x}=-2 \\
5 & ; & -2<\mathrm{x}<-1 \\
-2 & ; & \mathrm{x}=-1 \\
3 & ; & -1<\mathrm{x}<0 \\
0 & ; & \mathrm{x}=0 \\
1 & ; & 0<\mathrm{x}<1 \\
2 & ; & \mathrm{x}=1 \\
-1 & ; & 1<\mathrm{x}<2 \\
4 & ; & \mathrm{x}=2
\end{array}\right.
$$

so the function is discontinuous at all integers in $[-2,2]$.

Sol. conti at $\mathrm{x}=1$
$a-b=3$
dis at $\mathrm{x}=2$

$$
\neq 4 b-a
$$

$6 \neq 4 b-3-b$
$6 \neq 3 b-3$

$$
\begin{aligned}
& (\mathrm{a}, \mathrm{~b}) \neq(6,3) \\
& (\mathrm{x}, \mathrm{y}) \neq(6,3) \quad \text { Ans }
\end{aligned}
$$

$a \neq 6$
$32 \mathrm{f}(\mathrm{x})=\frac{\mathrm{a}^{\sin \mathrm{x}}-\mathrm{a}^{\tan \mathrm{x}}}{\tan \mathrm{x}-\sin \mathrm{x}}$ for $\mathrm{x}>0$

$$
=\frac{\ln \left(1+\mathrm{x}+\mathrm{x}^{2}\right)+\ln \left(1-\mathrm{x}+\mathrm{x}^{2}\right)}{\sec \mathrm{x}-\cos \mathrm{x}} \text { for } \mathrm{x}<0 \text {, if } \mathrm{f} \text { is continuous at } \mathrm{x}=0 \text {, find ' } \mathrm{a} \text { ' }
$$

now if $g(x)=\ln \left(2-\frac{x}{a}\right) \quad \cot (x-a)$ for $x \neq a, a \neq 0, a>0$. If g is continuous at $x=a$ then show that $g\left(e^{-1}\right)=-e$.
Sol. Since the function is conti at $x=0$ then

$$
\begin{aligned}
\text { V.F. }\left.\right|_{x=0} & =\text { RHL }\left.\right|_{x=0}=\left.L H L\right|_{x=0} & & \text { since the function is conti then } \\
\text { RHL }\left.\right|_{x=0} & =\lim _{x \rightarrow 0^{+}} f(x) & & f(0)=\left.L H L\right|_{x=0}=\left.R H L\right|_{x=0} \\
& =\lim _{x \rightarrow 0^{+}} \frac{a^{\sin x}-a^{\tan x}}{\tan x-\sin x} & & - \text { थna }=1
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0^{+}} \frac{a^{\tan x}\left(a^{\sin x-\tan x}-1\right)}{-1(\sin x-\tan x)}
$$

$\mathrm{a}=\frac{1}{\mathrm{e}}$
since $\mathrm{g}(\mathrm{x})$ conti at $\mathrm{x}=\mathrm{a}$

$$
\text { RHL }\left.\right|_{\mathrm{x}=0}=-\ell \mathrm{na}
$$

$$
\left.\operatorname{LHL}\right|_{\mathrm{x}=0}=\lim _{\mathrm{x} \rightarrow 0^{-}} \mathrm{f}(\mathrm{x})
$$

$$
=\lim _{x \rightarrow 0^{-}} \frac{\ln \left(1+x+x^{2}\right)+\ln \left(1-x+x^{2}\right)}{\sec x-\cos x}
$$

$$
=\lim _{x \rightarrow 0^{-}} \frac{\ln \left(\left(1+x+x^{2}\right)\left(1-x+x^{2}\right)\right) \cdot \cos x}{1-\cos 2 x}
$$

$$
\text { put } \mathrm{x}=0-\mathrm{h}
$$

$=\lim _{h \rightarrow 0} \frac{\ln \left(1+\mathrm{h}^{2}+\mathrm{h}^{4}\right) \cosh }{\sin ^{2} \mathrm{~h}}$
$=\lim _{h \rightarrow 0}\left(h^{2}+h^{4}\right) \frac{\cosh }{\sin ^{2} h}$
$=\lim _{h \rightarrow 0}\left(\frac{h}{\sinh }\right)^{2}\left(1+h^{2}\right) \cosh$

33 Find the value of $\operatorname{Lim}_{x \rightarrow 0^{+}} x^{\left(x^{x}-1\right)}$.
[Ans. 1]
[Sol. $l=\operatorname{Lim}_{\mathrm{x} \rightarrow 0^{+}} \mathrm{x}^{\left(\mathrm{x}^{\mathrm{x}}-1\right)} \quad\left(0^{0}\right.$ form $)$

$$
\begin{aligned}
& \ln l=\operatorname{Lim}_{\mathrm{x} \rightarrow 0}\left(\mathrm{x}^{\mathrm{x}}-1\right) \cdot \ln \mathrm{x}=\operatorname{Limit}_{\mathrm{x} \rightarrow 0} \frac{\left(\mathrm{e}^{\mathrm{x} \ln \mathrm{x}}-1\right)}{\mathrm{x} \ln \mathrm{x}} \operatorname{Limit}_{\mathrm{x} \rightarrow 0}^{\mathrm{L}} \ln \mathrm{x} \cdot \ln \mathrm{x} \\
& \\
& =\underset{\mathrm{x} \rightarrow 0}{\operatorname{Limit}} \mathrm{x}(\ln \mathrm{x})^{2} \quad(\operatorname{as} \mathrm{x} \rightarrow 0 \mathrm{x} \ln \mathrm{x} \rightarrow 0) \\
& \\
& =\underset{\mathrm{x} \rightarrow 0}{\operatorname{Limit}} \frac{(\ln \mathrm{x})^{2}}{1 / \mathrm{x}}=\underset{\mathrm{x} \rightarrow 0}{\operatorname{Limit}}-\frac{2 \ln \mathrm{x}}{\mathrm{x}} \cdot \mathrm{x}^{2} \quad \text { (use Lopital's rule) } \\
& \\
& =\underset{\mathrm{x} \rightarrow 0}{\operatorname{Limit}}-2 \ln \mathrm{x} \cdot \mathrm{x}=0 \quad \Rightarrow \quad l=\mathrm{e}^{0}=1
\end{aligned}
$$

$$
(x)=\sum_{r=1}^{n} \tan \left(\frac{x}{2^{r}}\right) \sec \left(\frac{x}{2^{r-1}}\right) ; r, n \in N
$$

$g(x)=\operatorname{Limit}_{\mathrm{n} \rightarrow \infty} \frac{\ell \mathrm{n}\left(\mathrm{f}(\mathrm{x})+\tan \frac{\mathrm{x}}{2^{\mathrm{n}}}\right)-\left(\mathrm{f}(\mathrm{x})+\tan \frac{\mathrm{x}}{2^{\mathrm{n}}}\right)^{\mathrm{n}} \cdot\left[\sin \left(\tan \frac{\mathrm{x}}{2}\right)\right]}{1+\left(\mathrm{f}(\mathrm{x})+\tan \frac{\mathrm{x}}{2^{\mathrm{n}}}\right)^{\mathrm{n}}}$

$$
=\mathrm{k} \text { for } \mathrm{x}=\frac{\pi}{4} \quad \text { and the domain of } \mathrm{g}(\mathrm{x}) \text { is }(0, \pi / 2)
$$

where [] denotes the greatest integer function.
Find the value of k, if possible, so that $g(x)$ is continuous at $x=\pi / 4$. Also state the points of discontinuity of g (x) in $(0, \pi / 4)$, if any.

Sol. $\tan \frac{x}{2} \sec x=\frac{\sin x / 2}{\cos \frac{x}{2} \cdot \cos x}=\frac{\sin \left(x-\frac{x}{2}\right)}{\cos \frac{x}{2} \cdot \cos x}=\frac{\sin x \cos \frac{x}{2}-\cos x \sin \frac{x}{2}}{\cos \frac{x}{2} \cdot \cos x}=\tan x-\tan \frac{x}{2}$
$\tan \frac{x}{2} \sec x=\tan x-\tan \frac{x}{2}$
$\tan \frac{x}{2^{2}} \cdot \sec \frac{x}{2}=\tan \frac{x}{2}-\tan \frac{x}{2^{2}}$
$\tan \frac{x}{2^{3}} \cdot \sec \frac{x}{2^{2}}=\tan \frac{x}{2^{2}}-\tan \frac{x}{2^{3}}$
-
-
$\tan \frac{x}{2^{n}} \cdot \sec \frac{x}{2^{n-1}}=\tan \frac{x}{2^{n-1}}-\tan \frac{x}{2^{n}}$
$f(x)=\tan x-\tan \left(\frac{x}{2^{n}}\right)$
$f(x)+\tan \left(\frac{x}{2^{n}}\right)=\tan x$
using (1)
$g(x)=\left\{\begin{array}{cc}\lim _{n \rightarrow \infty} \frac{\ln (\tan x)-(\tan x)^{n}\left[\sin \left(\tan \frac{x}{2}\right)\right]}{1+(\tan x)^{n}} & ; x \neq \frac{\pi}{4} \\ k & ; x=\frac{\pi}{4}\end{array}\right.$
$g(x)=\left\{\begin{array}{ccc}\lim _{h \rightarrow \infty} \frac{\ln (\tan x)}{1+(\tan x) n} & ; & x \neq \frac{\pi}{4} \\ k & ; & x=\frac{\pi}{4}\end{array}\right.$

$$
\mathrm{k}=0
$$

$\lim _{n \rightarrow \infty} x^{n}=\left\{\begin{array}{ccc}0 & ; & x<1 \\ 1 & ; & x=1 \\ \infty & ; & x>1\end{array}\right.$
$\lim _{n \rightarrow \infty}(\tan x)^{n}=\left\{\begin{array}{rll}0 & ; & x<\frac{\pi}{4} \\ 1 & ; & x=\frac{\pi}{4} \\ \infty & ; & x>\frac{\pi}{4}\end{array}\right.$

35 Let f be continuous on the interval $[0,1]$ to R such that $\mathrm{f}(0)=\mathrm{f}(1)$. Prove that there exists a point c in $\left[0, \frac{1}{2}\right]$ such that $\mathrm{f}(\mathrm{c})=\mathrm{f}\left(\mathrm{c}+\frac{1}{2}\right)$
Sol. Consider a conti function
$\mathrm{g}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}+\frac{1}{2}\right)-\mathrm{f}(\mathrm{x}) ; \mathrm{g}$ is conti$\forall \mathrm{x} \in\left[0, \frac{1}{2}\right]$
Now
$g(0)=f\left(\frac{1}{2}\right)-f(0) \Rightarrow g(0)=f\left(\frac{1}{2}\right)-f(1)$
$g\left(\frac{1}{2}\right) g(1)-f\left(\frac{1}{2}\right) \Rightarrow g(0)=f(1)-f\left(\frac{1}{2}\right)$
since g is continuous and $g(0)$ and $g\left(\frac{1}{2}\right)$ are of opposite sign hence the equation $g(x)=0$ must have at least one root in $\left[0, \frac{1}{2}\right]$.
\therefore for some $\mathrm{c} \in\left[0, \frac{1}{2}\right] ; \mathrm{g}(\mathrm{c})=0$

$$
\Rightarrow \mathrm{f}\left(\mathrm{c}+\frac{1}{2}\right)=\mathrm{f}(\mathrm{c})
$$

36 Consider the function $g(x)=\left[\begin{array}{cl}\frac{1-a^{x}+x a^{x} \ell n a}{a^{x} x^{2}} & ; x<0 \\ \frac{2^{x} a^{x}-x \ln 2-x \ell n a-1}{x^{2}} & ; x>0\end{array}\right.$
where $\mathrm{a}>0$, find the value of ' a ' \& ' $g(0)$ ' so that the function $g(x)$ is continuous at $\mathrm{x}=0$.

Sol. $\left.\quad L H L\right|_{x=0}=\lim _{x \rightarrow 0^{-}} g(x)$
$=\lim _{\mathrm{x} \rightarrow 0^{-}}\left(\frac{1-\mathrm{a}^{\mathrm{x}}+\mathrm{xa}^{\mathrm{x}} \ell \mathrm{na}}{\mathrm{a}^{\mathrm{x}} \mathrm{a}^{2}}\right)$
put $x=a-h$
$=\lim _{x \rightarrow 0}\left(\frac{1-\mathrm{a}^{-\mathrm{h}}-\mathrm{ha}^{-\mathrm{h}} \ell \text { na }}{\mathrm{a}^{-\mathrm{h}} \mathrm{h}^{2}}\right)$
$=\lim _{x \rightarrow 0}\left(\frac{a^{h}-1-h \ell n a}{2 h}\right) ; \frac{0}{0}$ form
$=\lim _{\mathrm{h} \rightarrow 0}\left(\frac{\mathrm{a}^{\mathrm{h}} \ell \mathrm{na}-0-\ln \mathrm{n}}{2 \mathrm{~h}}\right) ; \frac{0}{0}$ Ans $\quad \ln \left(2 \mathrm{a}^{2}\right) \cdot \ln 2=0$
$=\lim _{\mathrm{h} \rightarrow 0}\left(\frac{\mathrm{a}^{\mathrm{h}}(\ell \mathrm{na})^{2}}{2}\right)$

LHL $\left.\right|_{\mathrm{x}=0}=\frac{(\ell \mathrm{na})^{2}}{2}$

RHL $\left.\right|_{x=0}=\lim _{x \rightarrow 0^{+}} g(x)$
$=\lim _{x \rightarrow 0^{+}}\left(\frac{2^{x} a^{x}-x \ell n 2-x \ell n a-1}{x^{2}}\right) \quad \therefore g(0)=\frac{(\ln 2 a)^{2}}{2}$
put $x=0+h$
$=\lim _{\mathrm{h} \rightarrow 0}\left(\frac{(2 \mathrm{a})^{\mathrm{h}}-\mathrm{h} \ell \mathrm{n} 2-\mathrm{h} \ell \mathrm{na}-1}{\mathrm{~h}^{2}}\right) ; \frac{0}{0}$ form $\quad=\frac{1}{2}(\ln \sqrt{2})^{2}$

$$
\begin{array}{ll}
=\lim _{\mathrm{h} \rightarrow 0} \frac{(2 \mathrm{a})^{\mathrm{h}} \ell \mathrm{n} 2 \mathrm{a}-\ell \mathrm{na} 2}{2 \mathrm{~h}} ; \frac{0}{0} \text { form } & =\frac{1}{2}\left(\frac{1}{4}(\ell \mathrm{n} 2)^{2}\right) \\
=\lim _{\mathrm{h} \rightarrow 0} \frac{(2 \mathrm{a})^{\mathrm{h}}(\ln 2 \mathrm{a})^{2}}{2} & =\frac{1}{8}(\ell \ln 2)^{2}
\end{array}
$$

A function $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x)$. $f(y)$ for all x, y in R and $f(x) \neq 0$ for any x in R. Let the function the differentiable at $x=0$ and $f^{\prime}(0)=2$.

Show that $f^{\prime}(x)=2 f(x)$ for all x in R. Hence determine $f(x)$.
Sol Given that $f(x+y)=f(x) \cdot f(y)$ for all $x \in R$
Putting $x=y=0$ in (1), we get
$\mathrm{f}(0)\{\mathrm{f}(0)-1\}=0 \quad \Rightarrow \quad \mathrm{f}(0)=0$ or $\mathrm{f}(0)=1$
If $f(0)=0$, then $f(x)=f(x+0)=f(x) \cdot f(0)=0$ for all $x \in R$
Which is not true (given $f(x) \neq 0$)
So, $f(0)=1$

$$
\begin{array}{rlrl}
\therefore \quad f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h} \\
& =f(x) \lim _{h \rightarrow 0} \frac{f(h)-1}{h} & \\
& =f(x) \lim _{h \rightarrow 0} \frac{f(x)-f(0)}{h-0} & & (\because f(0)=1) \\
& =f(x) f^{\prime}(0)=2 f(x) & & \left(\because f^{\prime}(0)=2\right) \\
\Rightarrow \quad \frac{f^{\prime}(x)}{f(x)} & =2 &
\end{array}
$$

Integrating both sides w.r.t. x and taking limit 0 to x

$$
\int_{0}^{\mathrm{x}} \frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})} \mathrm{dx}=\int_{0}^{\mathrm{x}} 2 \mathrm{dx}
$$

$\Rightarrow \quad \ln \mathrm{f}(\mathrm{x})-\ln \mathrm{f}(0)=2 \mathrm{x} \quad \Rightarrow \quad \ln \mathrm{f}(\mathrm{x})-\ln 1=2 \mathrm{x}$
$\Rightarrow \quad \ln \mathrm{f}(\mathrm{x})-0=2 \mathrm{x} \quad \therefore \quad \mathrm{f}(\mathrm{x})=\mathrm{e}^{2 \mathrm{x}}$.

Let f be a function such that $\mathrm{f}(\mathrm{x}+\mathrm{f}(\mathrm{y}))=\mathrm{f}(\mathrm{f}(\mathrm{x}))+\mathrm{f}(\mathrm{y}) \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ and $\mathrm{f}(\mathrm{h})=\mathrm{h}$ for $0<h<\varepsilon$ where $\varepsilon>0$, then determine $f^{\prime}(x)$ and $f(x)$.

Given $f(x+f(y))=f(f(x)+f(y))$

Putting $\mathrm{x}=\mathrm{y}=0$ in (1), then

$$
\begin{align*}
& \mathrm{f}(0+\mathrm{f}(0))=\mathrm{f}(\mathrm{f}(0))+\mathrm{f}(0) \quad \Rightarrow \quad \mathrm{f}(\mathrm{f}(0))=\mathrm{f}(\mathrm{f}(0))+\mathrm{f}(0) \\
& \therefore \quad \mathrm{f}(0)=0 \tag{2}
\end{align*}
$$

Now $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad($ for $0<h<\varepsilon)$

$$
=\lim _{h \rightarrow 0} \frac{f(h+x)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{f(f(\mathrm{~h}))}{\mathrm{h}}
$$

$$
=\lim _{h \rightarrow 0} \frac{f(h)}{h} \quad(\because f(h)=h)
$$

$$
=\lim _{h \rightarrow 0} \frac{h}{h}=1 \quad(\because f(h)=h)
$$

Integrating both sides with limites 0 to x then $\mathrm{f}(\mathrm{x})=\mathrm{x}$

$$
\therefore \quad \mathrm{f}^{\prime}(\mathrm{x})=1
$$

Let $f(x)=\left\{\begin{array}{cc}-2, & -3 \leq x \leq 0 \\ x-2, & 0<x \leq 3\end{array}\right.$, where $g(x)=f(|x|)+|f(x)|$. Test the differentiability of $g(x)$ in the interval $(-3,3)$.
Sol From the given function

$$
\begin{aligned}
& f(|x|)=\left\{\begin{array}{ccc}
-x-2 & \text { for } & -3 \leq x \leq 0 \\
x-2 & \text { for } & 0<x \leq 3
\end{array} \text { and }|f(x)|=\left\{\begin{array}{ccc}
2 & \text { for } & -3 \leq x \leq 0 \\
-x+2 & \text { for } & 0<x \leq 2 \\
x-2 & \text { for } & 2<x \leq 3
\end{array}\right.\right. \\
& \therefore \quad g(x)=f(|x|)+|f(x)| \\
& =\left\{\begin{array}{ccc}
-x & \text { for } & -3 \leq x \leq 0 \\
0 & \text { for } & 0<x \leq 2 \\
2 x-4 & \text { for } & 2<x \leq 3
\end{array}\right.
\end{aligned}
$$

Check the differentiability

At

$$
\begin{aligned}
x=0: \quad \operatorname{Lg}^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{g(0-h)-g(0)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{-(0-h)-0}{-h}=-1 \\
\operatorname{Rg}^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(0-0)}{h}=0
\end{aligned}
$$

$\therefore \quad \operatorname{Lg}^{\prime}(0) \neq \operatorname{Rg}^{\prime}(0)$
$\therefore \quad \mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$
Check at
$x=2: \quad \operatorname{Lg}^{\prime}(2)=\lim _{h \rightarrow 0} \frac{g(2-h)-g(2)}{-h}$

$$
=\lim _{h \rightarrow 0} \frac{0-0}{-h}=0
$$

and

$$
\begin{aligned}
\operatorname{Rg}^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{g(2+h)-g(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(2+h)-4-0}{h}=2
\end{aligned}
$$

$\therefore \quad \operatorname{Lg}^{\prime}(2) \neq \operatorname{Rg}^{\prime}(2)$
Hence $\mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=2$.

Graphical method :

$\because \quad f(x)=\left\{\begin{array}{ccc}-2 & ; & -3 \leq x \leq 0 \\ x-2 & ; & 0<x \leq 3\end{array}\right.$
Graph of $f(x)$:

Graph of $f(|x|)$:

Graph of $|f(x)|:$

Graph of $\mathrm{g}(\mathrm{x})=|\mathrm{f}(\mathrm{x})|+\mathrm{f}(|\mathrm{x}|)$:

It is clear from the graph that $\mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$ and 2 .
$40 \quad$ Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a real valued function $\forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ such that $|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})| \leq|\mathrm{x}-\mathrm{y}|^{3}$.
Prove that $h(x)=\int f(x) d x$ is continuous function of $x \quad \forall x \in R$.
Sol \quad Since $|f(x)-f(y)| \leq|x-y|^{3} \quad x \neq y$

$$
\therefore \quad\left|\frac{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})}{\mathrm{x}-\mathrm{y}}\right| \leq|\mathrm{x}-\mathrm{y}|^{2}
$$

Taking lim as $\mathrm{y} \rightarrow \mathrm{x}$, we get

$$
\begin{array}{ll}
& \lim _{y \rightarrow x}\left|\frac{f(x)-f(y)}{x-y}\right| \leq \lim _{y \rightarrow x}|x-y|^{2} \\
\Rightarrow & \left|\lim _{y \rightarrow x} \frac{f(x)-f(y)}{x-y}\right| \leq\left|\lim _{y \rightarrow x}(x-y)^{2}\right| \\
\Rightarrow & \left|f^{\prime}(x)\right| \leq 0 \quad \Rightarrow \quad\left|f^{\prime}(x)\right|=0 \quad\left(\because\left|f^{\prime}(x)\right| \geq 0\right) \\
\therefore & f^{\prime}(x)=0 \quad \Rightarrow \quad f(x)=c(\text { constant }) \\
\therefore & h(x)=\int f(x) d x=\int c d x=c x+d \quad \text { where } d \text { is constant of integration. } \\
\therefore & h(x) \text { is a linear function of } x \text { which is continuous for all } x \in R .
\end{array}
$$

41 Let $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all real x and y. If $f^{\prime}(0)$ exists and equals -1 and $f(0)=1$,
then find $f(2)$.
Sol \quad Since $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$

$$
\begin{align*}
\therefore \quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{f\left(\frac{2 x+2 h}{2}\right)-f\left(\frac{2 x+0}{2}\right)}{h} \tag{1}\\
& =\lim _{h \rightarrow 0} \frac{\frac{f(2 x)+f(2 h)}{2}-\frac{f(2 x)+f(0)}{2}}{h} \quad[\text { from }(1 \tag{1}\\
& =\lim _{h \rightarrow 0} \frac{f(2 h)-f(0)}{2 h-0} \\
& =f^{\prime}(0) \\
& =-1 \quad \forall x \in R
\end{align*}
$$

Integrating, we get $f(x)=-x+c$
Putting $\mathrm{x}=0$, then $\mathrm{f}(0)=0+\mathrm{c}=1 \quad$ (given)
$\therefore \quad \mathrm{c}=1$ then $\mathrm{f}(\mathrm{x})=1-\mathrm{x} \quad \therefore \quad \mathrm{f}(2)=1-2=-1$

Graphical method :

Suppose $A(x, f(x))$ and $B(y, f(y))$ be any two points on the curve $y=f(x)$.

If M is the mid-point of $A B$ then co-ordinates of M are $\left(\frac{x+y}{2}, \frac{f(x)+f(y)}{2}\right)$ According to the graph, co-ordinates of P are $\left(\frac{x+y}{2}, f\left(\frac{x+y}{2}\right)\right)$ and $P L>M L$ $\Rightarrow \quad \mathrm{f}\left(\frac{\mathrm{x}+\mathrm{y}}{2}\right)>\frac{\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})}{2}$

But given $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ which is possible when $P \rightarrow M$
i.e. P lies on $A B$. Hence $y=f(x)$ must be a linear function.
Let $f(x)=a x+b$
$\Rightarrow \quad \mathrm{f}(0)=0+\mathrm{b}=1$ (given)
and $f^{\prime}(x)=a$
$\Rightarrow \quad \mathrm{f}^{\prime}(0)=\mathrm{a}=-1 \quad$ (given)
$\therefore \quad \mathrm{f}(\mathrm{x})=-\mathrm{x}+1$
$\therefore \quad \mathrm{f}(2)=-2+1=-1$.

42 Let $f\left(\frac{x+y}{n}\right)=\frac{f(x)+f(y)}{n} \forall x, y \in R ; n \neq 0,2$ and if $f^{\prime}(0)=k$ (A finite quantity) then prove that $\mathrm{f}(\mathrm{x})=\mathrm{kx} \forall \mathrm{x} \in \mathrm{R}$.
Sol Given $f\left(\frac{x+y}{n}\right)=\frac{f(x)+f(y)}{n}$
Putting $x=y=0$, we get $(n-2) f(0)=0$

$$
\begin{array}{ll}
\therefore & f(0)=0 \\
\begin{aligned}
\therefore & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned} & =\lim _{h \rightarrow 0} \frac{f\left(\frac{n x-2 \neq 0)}{n}\right)-f\left(\frac{n x+0}{n}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{f(n x)+f(n h)}{n}-\frac{f(n x)+f(0)}{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(n h)-f(0)}{n h-0} \\
\Rightarrow & f^{\prime}(x)=k
\end{array}
$$

On integrating we get $f(x)=k x+c$
Putting $\mathrm{x}=0$, then $\mathrm{f}(0)=0+\mathrm{c}=0 \quad(\because \mathrm{f}(0)=0)$
$\therefore \quad c=0$ then $f(x)=k x$.

43 If $f\left(\frac{x+y}{3}\right)=\frac{2+f(x)+f(y)}{3}$ for all real x and y and $f^{\prime}(2)=2$ then determine $y=f(x)$.
Sol $\quad \because \quad f\left(\frac{x+y}{3}\right)=\frac{2+f(x)+f(y)}{3}$
Differentiating both sides w.r.t. x treating y as constant,
then $f^{\prime}\left(\frac{x+y}{3}\right)\left(\frac{1}{3}\right)=\frac{2+f^{\prime}(x)+0}{3}$
Now replacing x by 0 and y by $3 x$, then

$$
\begin{array}{ll}
& \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(0)=\mathrm{c} \quad(\text { say) } \\
\text { At } \mathrm{x}=2, & \mathrm{f}^{\prime}(2)=\mathrm{c}=2 \quad(\text { given }) \\
\therefore & \mathrm{f}^{\prime}(\mathrm{x})=2
\end{array}
$$

On integrating we get $f(x)=2 x+d$
Putting $x=0$, then $f(0)=0+d=2$
[from (1)]
$\therefore \quad \mathrm{f}(\mathrm{x})=2 \mathrm{x}+2$
Hence $\mathrm{y}=2 \mathrm{x}+2$.

44 If $f\left(\frac{x+2 y}{3}\right)=\frac{f(x)+2 f(y)}{3} \forall x, y \in R$ and $f^{\prime}(0)=1$; prove that $f(x)$ is continuous for all $x \in R$.

Sol $\quad \because \quad f\left(\frac{x+2 y}{3}\right)=\frac{f(x)+2 f(y)}{3}$
Differentiating both sides w.r.t. x treating y as constant

$$
\mathrm{f}^{\prime}\left(\frac{\mathrm{x}+2 \mathrm{y}}{3}\right) \cdot \frac{1}{3}=\frac{\mathrm{f}^{\prime}(\mathrm{x})+0}{3}
$$

and replacing x by 0 and y by $\frac{3 x}{2}$
then $\quad f^{\prime}(x)=f^{\prime}(0)=1 \quad$ (given)
On integrating, we get
$f(x)=x+d, d$ is constant of integration which is linear function in x and hence it is always continuous function for all x.
If $f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right)$ for all $x, y \in R$ and $x y \neq 1$ and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=2$, find $f(\sqrt{3})$ and $f^{\prime}(-2)$.
Sol Given $f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right)$
Putting $x=0, y=0$, we get $\quad f(0)=0$
And putting $y=-x$, we get $f(x)+f(-x)=f(0)=0$
$\therefore \quad \mathrm{f}(\mathrm{x})=-\mathrm{f}(-\mathrm{x})$
Now $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{f(x+h)+f(-x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{f\left(\frac{h}{1+x(x+h)}\right)}{\frac{h}{1+x(x+h)}} \cdot \frac{1}{1+x(x+h)}
$$

$$
\begin{aligned}
& =2 \cdot \frac{1}{1+\mathrm{x}^{2}} \quad\left(\because \lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}=2\right) \\
& =\frac{2}{1+\mathrm{x}^{2}} \\
& \therefore \quad \mathrm{f}(\mathrm{x})=2 \tan ^{-1} \mathrm{x}+\mathrm{c} \quad \text { or } \mathrm{f}(0)=2 \tan ^{-1} 0+\mathrm{c}=0 \\
& \Rightarrow \quad 0=0+c \\
& \therefore \quad \mathrm{c}=0 \\
& \text { then } f(x)=2 \tan ^{-1} x \\
& \therefore \quad f(\sqrt{3})=2 \tan ^{-1}(\sqrt{3})=\frac{2 \pi}{3} \quad \text { and } \quad f^{\prime}(-2)=\frac{2}{1+(-2)^{2}}=\frac{2}{5} \text {. }
\end{aligned}
$$

46 Let $f(x+y)=f(x)+f(y)+2 x y-1$ for all $x, y \in R$. If $f(x)$ is differentiable and $f^{\prime}(0)=\sin \phi$ then prove that $f(x)>0 \quad \forall x \in R$.
Sol Given $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})+2 \mathrm{xy}-1 \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$
Putting $x=y=0$ in (1), we get

$$
\begin{align*}
\therefore \quad f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{2}\\
& =\lim _{h \rightarrow 0} \frac{f(x)+f(h)+2 x h-1-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)+2 x h-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)-1}{h}+\lim _{h \rightarrow 0}\left(\frac{2 x h}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}+\lim _{h \rightarrow 0}(2 x) \\
& =f^{\prime}(0)+2 x \\
& =\sin \phi+2 x \quad(\because f(0)=\sin \phi)
\end{align*}
$$

Integrating both sides w.r.t. x and taking limit 0 to x , then
$\int_{0}^{x} f^{\prime}(x) d x=\int_{0}^{x}(\sin \phi+2 x) d x$
$\Rightarrow \quad \mathrm{f}(\mathrm{x})-\mathrm{f}(0)=\mathrm{x} \sin \phi+\mathrm{x}^{2}$
$\Rightarrow \quad \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x} \sin \phi+1 \quad(\because \mathrm{f}(0)=1)$

Here coefficient of x^{2} is $1>0$ and Discriminant
$\mathrm{D}=\sin ^{2} \phi-4<0$.
Hence it is clear from graph $\mathrm{f}(\mathrm{x})>0 \quad \forall \mathrm{x} \in \mathrm{R}$.

Let f be a one-one function such that $\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})+2=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})+\mathrm{f}(\mathrm{xy}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R} \sim\{0\}$ and $f(0)=1, f^{\prime}(1)=2$ then prove that $3 \int f(x) d x-x(f(x)+2)$ is constant.
Sol We have $f(x) f(y)+2=f(x)+f(y)+f(x y)$
Putting $\mathrm{x}=1$ and $\mathrm{y}=1$, we get

$$
\begin{array}{ll}
& (\mathrm{f}(1))^{2}+2=3 \mathrm{f}(1) \\
& \mathrm{f}(1)=1,2 \\
\mathrm{f}(1) \neq 1 & \\
& (\because \mathrm{f}(0)=1 \text { and } \mathrm{f} \text { is one-one function) }
\end{array}
$$

In (1), replacing y by $\frac{1}{\mathrm{x}}$

$$
\begin{array}{ll}
\therefore & f(x) f\left(\frac{1}{x}\right)+2=f(x)+f\left(\frac{1}{x}\right)+f(1) \\
\Rightarrow & f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right) \\
\therefore & f(x)=1 \pm x^{n}(x \in N) \\
\Rightarrow & f^{\prime}(x)= \pm n x^{n-1} \quad(\because f(1)=2) \\
\Rightarrow \quad & f^{\prime}(1)= \pm n=2
\end{array}
$$

Taking positive sign $\Rightarrow \quad n=2$ then $f(x)=1+x^{2}$
Now, $\quad 3 \int f(x) d x-x(f(x)+2)$

$$
\begin{aligned}
& =3 \int\left(1+x^{2}\right) d x-x\left(1+x^{2}+2\right) \\
& =3\left(x+\frac{x^{3}}{3}\right)+c-3 x-x^{3} \\
& =c=\text { constant }
\end{aligned}
$$

Sol Given $e^{-x y} f(x y)=e^{-x} f(x)+e^{-y} f(y)$
Putting $x=y=1$ in (1) we get $f(1)=0$
Now, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f\left(x\left(1+\frac{h}{x}\right)\right)-f(x \cdot 1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x+h} \cdot\left\{e^{-x} f(x)+e^{-1-\frac{h}{x}} f\left(1+\frac{h}{x}\right)\right\}-e^{x}\left(e^{-x} f(x)+e^{-1} f(1)\right)}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{e^{h} f(x)+e^{x+h-1-\frac{h}{x}} f\left(1+\frac{h}{x}\right)-f(x)-e^{x-1} f(1)}{h}
$$

$$
\begin{aligned}
&=f(x) \lim _{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right)+e^{(x-1)} \lim _{h \rightarrow 0} \frac{e^{h-\frac{h}{x}} f\left(1+\frac{h}{x}\right)}{x \cdot \frac{h}{x}} \quad(\because f(1)=0) \\
&=f(x) \cdot 1+e^{x-1} \cdot \frac{f^{\prime}(1)}{x} \\
&=f(x)+\frac{e^{x-1} \cdot e}{x} \\
& \Rightarrow \quad \frac{d}{d x}\left(e^{-x} f(x)\right)=\frac{1}{x}
\end{aligned}
$$

On integrating we have $e^{-x} f(x)=\ln x+c$ at $x=1, c=0$
$\therefore \quad \mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} \ln \mathrm{x}$.
49 Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$, such that $\mathrm{f}^{\prime}(0)=1$
and $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})+\mathrm{e}^{\mathrm{x}+\mathrm{y}}(\mathrm{x}+\mathrm{y})-\mathrm{xe}^{\mathrm{x}}-\mathrm{ye}^{\mathrm{y}}+2 \mathrm{xy} \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ then determine $\mathrm{f}(\mathrm{x})$.
Sol Given $f(x+y)=f(x)+f(y)+e^{x+y}(x+y)-x e^{x}-y e^{y}+2 x y$
Putting $x=y=0$, we get $f(0)=0$
Now, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f(x)+f(h)+e^{x+h}(x+h)-x e^{x}-h e^{h}+2 x h-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)+x e^{x}\left(e^{h}-1\right)+h e^{x+h}-h e^{h}+2 x h}{h} \\
& =\lim _{h \rightarrow 0}\left\{\frac{f(h)}{h}+x e^{x} \frac{\left(e^{h}-1\right)}{h}+e^{x+h}-e^{h}+2 x\right\} \\
& =f^{\prime}(0)+x e^{x} \cdot 1+e^{x}-1+2 x \\
& =1+x e^{x}+e^{x}+2 x-1 \\
& =x e^{x}+e^{x}+2 x
\end{aligned}
$$

Integrating both sides w.r.t. x with limit 0 to x

$$
\begin{gathered}
\therefore \quad f(x)-f(0)=x e^{x}-e^{x}+e^{x}+x^{2} \\
f(x)-0=x e^{x}+x^{2}
\end{gathered}
$$

Hence

$$
f(x)=x^{2}+x e^{x}
$$

Let $f(x y)=x f(y)+y f(x)$ for all $x, y \in R_{+}$and $f(x)$ be differentiable in $(0, \infty)$ then determine $f(x)$.
Sol Given $f(x y)=x f(y)+y f(x)$
Differentiating both sides w.r.t. x treating y as constant,

$$
\begin{array}{ll}
& f^{\prime}(x y) \cdot y=f(y)+y f^{\prime}(x) \\
\text { Putting } y=x \text { and } x=1, \text { then } & f^{\prime}(x) \cdot x=f(x)+x f^{\prime}(1) \\
\Rightarrow \quad \frac{x f^{\prime}(x)-f(x)}{x^{2}}=\frac{f^{\prime}(1)}{x} & \Rightarrow \quad \frac{d}{d x}\left(\frac{f(x)}{x}\right)=\frac{f^{\prime}(1)}{x}
\end{array}
$$

Integrating both sides w.r.t. x taking limit 1 to x ,

$$
\left.\begin{array}{rr}
\frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}-\frac{\mathrm{f}(1)}{1}=\mathrm{f}^{\prime}(1)\{\ln \mathrm{x}-\ln 1\} \\
\Rightarrow \quad & (\because \mathrm{f}(\mathrm{x}) \\
\mathrm{x}
\end{array}-0=\mathrm{f}^{\prime}(1) \ln \mathrm{x} \quad(1)=0\right)
$$

Hence, $f(x)=f^{\prime}(1)(x \ln x)$.

Given $f(x y)=f(x) f(y)$
Putting $\mathrm{x}=\mathrm{y}=1$ then we get $\mathrm{f}(1)=1$.
Differentiating both sides w.r.t. x treating y as constant,

$$
f^{\prime}(x y) \cdot y=f^{\prime}(x) f(y)
$$

Replacing y by x and x by 1 , then

$$
\begin{array}{ll}
\Rightarrow & \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{f}(\mathrm{x}) \mathrm{f}^{\prime}(1)}{\mathrm{x}}=\frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}} \\
\Rightarrow \quad \frac{\mathrm{f}^{\prime}(\mathrm{x}) \cdot \mathrm{x}=\mathrm{f}^{\prime}(1) \mathrm{f}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}=\frac{1}{\mathrm{x}}
\end{array} \quad\left(\because \mathrm{f}^{\prime}(1)=1\right)
$$

Integrating both sides w.r.t. x and taking limit 1 to x , then

$$
\int_{1}^{x} \frac{f^{\prime}(x)}{f(x)} d x=\int_{1}^{x} \frac{1}{x} d x
$$

$$
\begin{array}{lll}
\Rightarrow & \ln \mathrm{f}(\mathrm{x})-\ln \mathrm{f}(1)=\ln \mathrm{x}-\ln 1 \\
\Rightarrow & \ln \mathrm{f}(\mathrm{x})-0=\ln \mathrm{x}-0 \quad & \therefore \quad \mathrm{f}(\mathrm{x})=\mathrm{x} .
\end{array}
$$

52 If $2 f(x)=f(x y)+f\left(\frac{x}{y}\right)$ for all $x, y \in R^{+}, f(1)=0$ and $f^{\prime}(1)=1$, then find $f(e)$ and $f^{\prime}(2)$.

Sol Given $2 f(x)=f(x y)+f\left(\frac{x}{y}\right)$
Replacing x by y and y by x in (1), then

$$
\begin{equation*}
2 f(y)=f(x y)+f\left(\frac{y}{x}\right) \tag{2}
\end{equation*}
$$

Subtract (2) from (1), we get

$$
\begin{equation*}
2\{f(x)-f(y)\}=f\left(\frac{x}{y}\right)-f\left(\frac{y}{x}\right) \tag{3}
\end{equation*}
$$

Putting $\mathrm{x}_{\mathrm{x}}=1$ in (1) then $\quad 2 \mathrm{f}(1)=\mathrm{f}(\mathrm{y})+\mathrm{f}\left(\frac{1}{\mathrm{y}}\right)=0 \quad(\because \mathrm{f}(1)=0)$
$\therefore \quad f(y)=-f\left(\frac{1}{y}\right) \quad \therefore \quad f\left(\frac{y}{x}\right)=-f\left(\frac{x}{y}\right)$
Now from (3) and (4), we get
or

$$
2\{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})\}=2 \mathrm{f}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)
$$

$$
\begin{equation*}
f(x)-f(y)=f\left(\frac{x}{y}\right) \tag{5}
\end{equation*}
$$

Now,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)}{h}
$$

$$
\begin{array}{ll}
& =\lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)}{\frac{h}{x} \cdot x}=\frac{1}{x} f^{\prime}(1)=\frac{1}{x} \quad\left\{\because f^{\prime}(1)=1\right\} \\
\therefore \quad & f^{\prime}(x)=\frac{1}{x} \quad
\end{array} \quad f^{\prime}(2)=\frac{1}{2}, ~ l
$$

and $f(x)=\ln x+\ln c$ for $x=1$, and $f(1)=\ln 1+\ln c$
$\Rightarrow \quad 0=0+\ln \mathrm{c}$
$\therefore \quad \operatorname{lnc}=0$
then $\quad f(x)=\ln x$
$\therefore \quad f(e)=\ln e=1$.
$p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$. If $|p(x)| \leq\left|e^{x-1}-1\right|$ for all $x \geq 0$, prove that $\left|\mathrm{a}_{1}+2 \mathrm{a}_{2}+\ldots+\mathrm{na}_{\mathrm{n}}\right| \leq 1$.
Given $\mathrm{p}(\mathrm{x})=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$

$$
\begin{array}{ll}
\therefore & \mathrm{p}^{\prime}(\mathrm{x})=0+\mathrm{a}_{1}+2 \mathrm{a}_{2} \mathrm{x}+\ldots+\mathrm{na}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}-1} \\
\Rightarrow & \mathrm{p}^{\prime}(1)=\mathrm{a}_{1}+2 \mathrm{a}_{2}+\ldots+\mathrm{na}_{\mathrm{n}} \tag{1}
\end{array}
$$

Now, $|\mathrm{p}(1)| \leq\left|\mathrm{e}^{1-1}-1\right|$

$$
=\left|e^{0}-1\right|=|1-1|=0
$$

$\Rightarrow \quad|\mathrm{p}(1)| \leq 0 \quad \Rightarrow \quad \mathrm{p}(1)=0 \quad(\because|\mathrm{p}(1)| \geq 0)$
As $\quad|\mathrm{p}(\mathrm{x})| \leq\left|\mathrm{e}^{\mathrm{x}-1}-1\right|$
we get $|\mathrm{p}(1+\mathrm{h})| \leq\left|\mathrm{e}^{\mathrm{h}}-1\right| \forall \mathrm{h}>-1, \mathrm{~h} \neq 0$
$\Rightarrow \quad|\mathrm{p}(1+\mathrm{h})-\mathrm{p}(1)| \leq\left|\mathrm{e}^{\mathrm{h}}-1\right|$
$(\because \mathrm{p}(1)=0)$
$\Rightarrow \quad\left|\frac{\mathrm{p}(1+\mathrm{h})-\mathrm{p}(1)}{\mathrm{h}}\right| \leq\left|\frac{\mathrm{e}^{\mathrm{h}}-1}{\mathrm{~h}}\right|$
Taking limit as $\mathrm{h} \rightarrow 0$, then
$\Rightarrow \quad \lim _{\mathrm{h} \rightarrow 0}\left|\frac{\mathrm{p}(1+\mathrm{h})-\mathrm{p}(1)}{\mathrm{h}}\right| \leq \lim _{\mathrm{h} \rightarrow 0}\left|\frac{\mathrm{e}^{\mathrm{h}}-1}{\mathrm{~h}}\right|$
$\Rightarrow \quad\left|\lim _{h \rightarrow 0} \frac{\mathrm{p}(1+\mathrm{h})-\mathrm{p}(1)}{\mathrm{h}}\right| \leq\left|\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{h}}-1}{\mathrm{~h}}\right|$
$\Rightarrow \quad\left|\mathrm{p}^{\prime}(1)\right| \leq 1$
$\Rightarrow \quad\left|\mathrm{a}_{1}+2 \mathrm{a}_{2}+\ldots+\mathrm{na}_{\mathrm{n}}\right| \leq 1$

54 Let $f\left(\frac{x y}{2}\right)=\frac{f(x) f(y)}{2}$ for all real x and y. If $f(1)=f^{\prime}(1)$, show that $f(x)+f(1-x)=$ constant, for all non-zero real x.
Sol Given $f\left(\frac{x y}{2}\right)=\frac{f(x) f(y)}{2}$
Replacing x by $2 x$ and y by 1 , we get

$$
\begin{equation*}
2 f(x)=f(2 x) f(1) \tag{1}
\end{equation*}
$$

and,

$$
f\left(\frac{x+y}{2}\right)=f\left(\frac{x\left(1+\frac{y}{x}\right)}{2}\right)=\frac{f(x) f\left(1+\frac{y}{x}\right)}{2}, x \neq 0
$$

now,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(\frac{2 x+2 h}{2}\right)-f(x)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\frac{f(2 x) f\left(1+\frac{h}{x}\right)}{2}-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(2 x) f\left(1+\frac{h}{x}\right)-2 f(x)}{2 h} \\
& =\lim _{h \rightarrow 0} \frac{f(2 x) f\left(1+\frac{h}{x}\right)-f(2 x) f(1)}{2 h} \\
& =\frac{f(2 x)}{2} \lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)-f(1)}{x \cdot \frac{h}{x}} \\
& =\frac{f(2 x)}{2 x} \cdot f^{\prime}(1) \\
& =\frac{2 f(x)}{f(1) \cdot 2 x} \cdot f^{\prime}(1)=\frac{f(x)}{x} \\
& =\frac{f^{\prime}(x)}{f(x)}=\frac{1}{x}
\end{aligned}
$$

Integrating both sides w.r.t. x , we get

$$
\begin{array}{llr}
& & \ln \mathrm{f}(\mathrm{x})=\ln \mathrm{x}+\ln \mathrm{c} \\
\Rightarrow & \mathrm{f}(\mathrm{x})=\mathrm{cx} & (\mathrm{c} \text { is constant }>0) \\
\therefore & \mathrm{f}(\mathrm{x})+\mathrm{f}(1-\mathrm{x})=\mathrm{cx}+\mathrm{c}(1-\mathrm{x})=\mathrm{cx}+\mathrm{c}-\mathrm{cx}=\mathrm{c}=\mathrm{constant} .
\end{array}
$$

Let $f(x)=x^{3}-x^{2}+x+1$ and $g(x)=\max \{f(t): 0 \leq t \leq x\}, 0 \leq x \leq 1=3-x, 1<x \leq 2$.
Discuss the continuity and differentiability of the function $g(x)$ in the interval $(0,2)$.
Sol Given $f(x)=x^{3}-x^{2}+x+1$

$$
\begin{aligned}
\therefore \quad f^{\prime}(x) & =3 x^{2}-2 x+1 \\
& =3\left\{x^{2}-\frac{2 x}{3}+\frac{1}{3}\right\} \\
& =3\left\{\left(x-\frac{1}{3}\right)^{2}+\frac{2}{9}\right\}>0
\end{aligned}
$$

$\therefore \quad \mathrm{f}(\mathrm{x})$ is strictly increasing in $(0,2)$
$\therefore \quad$ maximum value of $f(t)$ in $0 \leq t \leq x$ is $f(x)$

$$
\begin{aligned}
\therefore \quad g(x) & =\left\{\begin{array}{cc}
f(x), & 0 \leq x \leq 1 \\
3-x, & 1<x \leq 2
\end{array}\right. \\
& =\left\{\begin{array}{ccc}
x^{3}-x^{2}+x+1, & 0 \leq x \leq 1 \\
3-x & , & 1<x \leq 2
\end{array}\right.
\end{aligned}
$$

Graph of $g(x)$:

Clearly, $\mathrm{g}(\mathrm{x})$ is continuous for all $\mathrm{x} \in(0,2)$ and differentiable at all points in this interval except $\mathrm{x}=1$.

Let $f(x)=x^{3}-9 x^{2}+15 x+6$, and $g(x)=\left\{\begin{array}{cc}\min f(t): 0 \leq t \leq x & , 0 \leq x \leq 6 \\ x-18 & , \quad x>6\end{array}\right.$, then draw the graph of $g(x)$ and discuss the continuity and differentiability of $g(x)$.
Sol $\quad \because \quad f(x)=x^{3}-9 x^{2}+15 x+6$,
$\therefore \quad \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-18 \mathrm{x}+15=3\left(\mathrm{x}^{2}-6 \mathrm{x}+5\right)=3(\mathrm{x}-1)(\mathrm{x}-5)$
If $\quad f^{\prime}(x)>0$ then $x \in(-\infty, 1) \cup(5, \infty)$
and if $\mathrm{f}^{\prime}(\mathrm{x})<0$ then $\mathrm{x} \in(1,5)$

Hence $f(x)$ is increasing in
$(-\infty, 1) \cup(5, \infty)$ and decreasing in $(1,5)$.
Now, $f(x)=6$

$$
\Rightarrow \quad x^{3}-9 x^{2}+15 x+6=6
$$

$\Rightarrow \quad x^{3}+9 x^{2}+15 x=0 \quad \Rightarrow \quad x\left(x^{2}-9 x+15\right)=0$
$\Rightarrow \quad \mathrm{x}=0, \frac{9 \pm \sqrt{21}}{2}$
$\Rightarrow \quad \mathrm{x}=0, \frac{9-\sqrt{21}}{2}$

$$
\left(x \neq \frac{9+\sqrt{21}}{2}, \because \frac{9-\sqrt{21}}{2}>6\right)
$$

$$
\therefore \quad g(x)=\left\{\begin{array}{cc}
6 & , 0 \leq x<\frac{9-\sqrt{21}}{2} \\
x^{3}-9 x^{2}+15 x+6 & , \\
x-18 & \frac{9-\sqrt{21}}{2} \leq x \leq 6 \\
x & x>6
\end{array}\right.
$$

Graph of $g(x)$:

Clearly $\mathrm{g}(\mathrm{x})$ is continuous in $[0, \infty)$ and differentiable at all points in this interval other than $\frac{9-\sqrt{21}}{2}$ and 6 .

57 Let $f(x)=\left\{\begin{array}{ccc}b \sin ^{-1}\left(\frac{x+c}{2}\right) & ,-\frac{1}{2}<x<0 \\ \frac{1}{2} & , \quad x=0 \quad, \text { If } f(x) \text { is differentiable at } x=0 \text {. Find the } \\ \frac{e^{a x / 2}-1}{x} & , 0<x<\frac{1}{2}\end{array}\right.$
value of a also prove that $64 b^{2}=4-c^{2}$.
Sol $\quad f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{e^{\frac{a h}{2}}-1}{h}-\frac{1}{2}}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\frac{a}{2} \cdot\left(\frac{e^{\frac{a h}{2}}-1}{\frac{a h}{2}}\right)-\frac{1}{2}}{h}
$$

at $\mathrm{h} \rightarrow 0$ numerator must be $=0$, then $\frac{\mathrm{a}}{2} \cdot 1-\frac{1}{2}=0$
$\therefore \quad \mathrm{a}=1$
$\Rightarrow \quad \operatorname{Rf}^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\frac{e^{\frac{h}{2}}-1}{h}-\frac{1}{2}}{h}=\lim _{h \rightarrow 0} \frac{2\left(e^{\frac{h}{2}}-1\right)-h}{2 h^{2}}=P($ say $)$
$\therefore \quad P=\lim _{h \rightarrow 0} \frac{2\left(e^{\frac{h}{2}}-1\right)-h}{2 h^{2}}$
Replacing h by $-h$ then $P=\lim _{h \rightarrow 0} \frac{2\left(e^{-\frac{h}{2}}-1\right)+h}{2 h^{2}}$
$\operatorname{Adding}(1)$ and (2) then $2 P=\lim _{h \rightarrow 0} \frac{e^{\frac{h}{2}}+e^{-\frac{h}{2}}-2}{h^{2}}=\lim _{h \rightarrow 0} \frac{e^{h}-2 e^{\frac{h}{2}}+1}{h^{2} e^{\frac{h}{2}}}$

$$
=\lim _{h \rightarrow 0}\left(\frac{e^{\frac{h}{2}}-1}{\frac{h}{2}}\right)^{2} \cdot \frac{1}{4 e^{\frac{h}{2}}}=\frac{1}{4}
$$

$\therefore \quad \mathrm{P}=\frac{1}{8} \quad \Rightarrow \quad \mathrm{Rf}^{\prime}(0)=\frac{1}{8}$
$L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{b \sin ^{-1}\left(\frac{-h+c}{2}\right)-\frac{1}{2}}{-h}$
Now, at $\mathrm{h} \rightarrow 0$ numerator must be $=0$

$$
\therefore \quad \mathrm{b} \sin ^{-1}\left(\frac{\mathrm{c}}{2}\right)-\frac{1}{2}=0
$$

then,

$$
\begin{aligned}
\operatorname{Lf}^{\prime}(0) & =b \lim _{h \rightarrow 0} \frac{\sin ^{-1}\left(\frac{c-h}{2}\right)-\sin ^{-1}\left(\frac{c}{2}\right)}{-h} \\
& =b \lim _{h \rightarrow 0} \frac{\sin ^{-1}\left\{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}-\frac{c}{2} \sqrt{\left(1-\left(\frac{c-h}{2}\right)^{2}\right)}\right\}}{-h} \\
& =b \lim _{h \rightarrow 0} \frac{\sin ^{-1}\left\{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}-\frac{c}{2} \sqrt{\left(1-\left(\frac{c-h}{2}\right)^{2}\right)}\right\}}{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}-\frac{c}{2} \sqrt{\left(1-\left(\frac{c-h}{2}\right)^{2}\right)}}
\end{aligned}
$$

$$
\begin{align*}
& \cdot \frac{\left\{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}-\frac{c}{2} \sqrt{1-\left(\frac{c-h}{2}\right)^{2}}\right\}}{-h} \\
& =-b \lim _{h \rightarrow 0} \frac{\left\{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}-\frac{c}{2} \sqrt{1-\left(\frac{c-h}{2}\right)^{2}}\right\}\left\{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}+\frac{c}{2} \sqrt{1-\left(\frac{c-h}{2}\right)^{2}}\right\}}{h\left\{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}-\frac{c}{2} \sqrt{1-\left(\frac{c-h}{2}\right)^{2}}\right\}} \\
& =-b \lim _{h \rightarrow 0} \frac{\left(\frac{c-h}{2}\right)^{2}\left(1-\frac{c^{2}}{4}\right)-\frac{c^{2}}{4}\left(1-\left(\frac{c-h}{2}\right)^{2}\right)}{h\left\{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}+\frac{c}{2} \sqrt{1-\left(\frac{c-h}{2}\right)^{2}}\right\}} \\
& =-b \lim _{h \rightarrow 0} \frac{(2 c-h)(-h)}{4 h\left\{\left(\frac{c-h}{2}\right) \sqrt{\left(1-\frac{c^{2}}{4}\right)}+\frac{c}{2} \sqrt{\left\{1-\left(\frac{c-h}{2}\right)^{2}\right\}}\right\}} \\
& =\frac{2 b c}{4\left\{c \sqrt{\left.\left(1-\frac{c^{2}}{4}\right)\right\}}=\frac{b}{2 \sqrt{\left(1-\frac{c^{2}}{4}\right)}}\right.} \tag{5}\\
& \\
&
\end{align*}
$$

From (3) and (5),

$$
\begin{aligned}
& \frac{1}{8}
\end{aligned}=\frac{\mathrm{b}}{2 \sqrt{\left(1-\frac{\mathrm{c}^{2}}{4}\right)}}, ~=64 \mathrm{~b}^{2}=4-\mathrm{c}^{2} .
$$

58 Let $\alpha \in \mathrm{R}$. Prove that a function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is differentiable at $\mathrm{x}=\alpha$ if and only if there is a function $g: R \rightarrow R$ which is continuous at α and satisfies $f(x)-f(\alpha)=g(x)(x-\alpha)$ for all $\alpha \in R$.
Sol Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be differentiable at $\mathrm{x}=\alpha \in \mathrm{R}$, then
$\lim _{x \rightarrow \alpha} \frac{f(x)-f(\alpha)}{(x-\alpha)}=f^{\prime}(\alpha)$ exists and finite.
i.e. $\quad L f^{\prime}(\alpha)=R f^{\prime}(\alpha)=f^{\prime}(\alpha)$
$\Rightarrow \quad \lim _{x \rightarrow \alpha-} \frac{f(x)-f(\alpha)}{(x-\alpha)}=\lim _{x \rightarrow \alpha+} \frac{f(x)-f(\alpha)}{(x-\alpha)}=f^{\prime}(\alpha)$
$\lim _{x \rightarrow \alpha-} g(x)=\lim _{x \rightarrow \alpha+} g(x)=f^{\prime}(\alpha) \quad\{\because f(x)-f(\alpha)=g(x)(x-\alpha)\}$

$$
\text { Again } \begin{aligned}
f^{\prime}(\alpha) & =\lim _{x \rightarrow \alpha} \frac{f(x)-f(\alpha)}{(x-\alpha)} \\
& =\lim _{x \rightarrow \alpha} g(x)=g(\alpha)
\end{aligned}
$$

From (1) and (2), we get $\lim _{x \rightarrow \alpha-} g(x)=\lim _{x \rightarrow \alpha+} g(x)=g(\alpha)$

$$
\text { L.H.L }=\text { R.H.L }=\text { V.F. }
$$

$\Rightarrow \mathrm{g}(\mathrm{x})$ is continuous function at $\mathrm{x}=\alpha \in \mathrm{R}$.
Let $g(x)=0$ if $-\mathrm{e} \leq \mathrm{x}<1$

$$
=\left\{1+\frac{1}{3} \sin \left(\ln \mathrm{x}^{2 \pi}\right)\right\} \text { if } 1 \leq \mathrm{x} \leq \mathrm{e} .
$$

where $\}$ denotes the fractional part function and

$$
\begin{aligned}
f(x) & =x g(x) \text { for } g(x)=1+\frac{1}{3} \sin \left(\ln x^{2 \pi}\right) \\
& =x(g(x)+1) \text { otherwise }
\end{aligned}
$$

Discuss the continuity and differentiability of $f(x)$ over its domain.
Sol Given $g(x)=\left\{1+\frac{1}{3} \sin \left(\ln x^{2 \pi}\right)\right\}$ for $1 \leq \mathrm{x} \leq \mathrm{e}$

$$
=0 \text { for }-\mathrm{e} \leq \mathrm{x}<1
$$

i.e., $\quad g(x)=1+\frac{1}{3} \sin \left(\ln x^{2 \pi}\right)-\left[1+\frac{1}{3} \sin \left(\ln x^{2 \pi}\right)\right]$

$$
\begin{aligned}
& =\frac{1}{3} \sin \left(\ln \mathrm{x}^{2 \pi}\right)-\left[\frac{1}{3} \sin \left(\ln \mathrm{x}^{2 \pi}\right)\right], 1 \leq \mathrm{x} \leq \mathrm{e} \\
& =0,-\mathrm{e} \leq \mathrm{x}<1
\end{aligned}
$$

where [.] denotes the greatest integer function.
consider: $1 \leq \mathrm{x} \leq \mathrm{e}$

$$
\begin{array}{ll}
\Rightarrow & (1)^{2 \pi} \leq \mathrm{x}^{2 \pi} \leq \mathrm{e}^{2 \pi} \\
\Rightarrow \quad 0 \leq \ln \left(\mathrm{x}^{2 \pi}\right) \leq 2 \pi
\end{array}
$$

Case I : If $0 \leq \ln \left(\mathrm{x}^{2 \pi}\right) \leq \pi$ i.e. $1 \leq \mathrm{x} \leq \sqrt{\mathrm{e}}$ then $0 \leq \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right) \leq 1$

$$
\begin{array}{ll}
\Rightarrow & 0 \leq \frac{1}{3} \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right) \leq \frac{1}{3} \\
\therefore & \therefore \quad\left[\frac{1}{3} \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right)\right]=0 \\
\therefore \quad \mathrm{x})=\frac{1}{3} \sin \left(\ln \mathrm{x}^{2 \pi}\right) & \text { for } \quad 1 \leq \mathrm{x} \leq \sqrt{\mathrm{e}}
\end{array}
$$

Case II: If $\pi<\ln \left(\mathrm{x}^{2 \pi}\right)<2 \pi$ i.e., $\sqrt{\mathrm{e}}<\mathrm{x}<\mathrm{e}$ then $-1 \leq \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right)<0$

$$
\begin{array}{lrrr}
\Rightarrow & -\frac{1}{3} \leq \frac{1}{3} \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right)<0 & \therefore & {\left[\frac{1}{3} \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right)\right]=-1} \\
\therefore & \mathrm{~g}(\mathrm{x})=1+\frac{1}{3} \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right) & \text { for } \sqrt{\mathrm{e}}<\mathrm{x}<\mathrm{e}
\end{array}
$$

Case III : If $\ln \left(\mathrm{x}^{2 \pi}\right)=2 \pi \quad \Rightarrow \quad \mathrm{x}=\mathrm{e} \quad \Rightarrow \quad \mathrm{g}(\mathrm{x})=\{1\}=0$
Combining all cases, we get

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\mathrm{x}\left(1+\frac{1}{3} \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right)\right) & & \text { for } \sqrt{\mathrm{e}}<\mathrm{x}<\mathrm{e} \\
& =\mathrm{x}\left(1+\frac{1}{3} \sin \left(\ln \left(\mathrm{x}^{2 \pi}\right)\right)\right) & & \text { for } 1 \leq \mathrm{x} \leq \sqrt{\mathrm{e}} \\
& =\mathrm{x}(1+0) & & \text { for }-\mathrm{e} \leq \mathrm{x}<1 \\
& =\mathrm{x}(1+0) & & \text { for } \mathrm{x}=\mathrm{e}
\end{aligned}
$$

$$
=x
$$

$\therefore \quad \mathrm{f}$ is differentiable in $(-\mathrm{e}, 1)$ and $(1, \mathrm{e})$
Check the differentiable of $f(x)$ at $x=1$.

$$
\begin{aligned}
\operatorname{Lf}^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{(1-h)-1}{-h}=1
\end{aligned}
$$

and $\quad R f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{(1+h) \cdot\left(1+\frac{1}{3} \sin \left(\ln (1+h)^{2 \pi}\right)\right)-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{(1+h)}{3} \sin \left(\ln (1+h)^{2 \pi}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(1+\frac{(1+h)}{3} \frac{\sin \left\{\ln (1+h)^{2 \pi}\right\}}{h}\right) \\
& =1+\lim _{h \rightarrow 0} \frac{(1+h)}{3} \lim _{h \rightarrow 0} \frac{\sin \left(\ln (1+h)^{2 \pi}\right)}{h} \\
& =1+\lim _{h \rightarrow 0} \frac{(1+h)}{3} \lim _{h \rightarrow 0} \frac{\sin \{2 \pi \ln (1+h)\}}{2 \pi \ln (1+h)} \cdot \frac{2 \pi \ln (1+h)}{h} \\
& =1+\left(\frac{1+0}{3}\right) \cdot 1 \cdot 2 \pi \cdot 1 \\
& =1+\frac{2 \pi}{3} .
\end{aligned}
$$

Thus f is not differentiable at $\mathrm{x}=1$.

Hence f is continuous and differentiable for all $\mathrm{x} \in$ domain of except not differentiable at $\mathrm{x}=1$.

60 Suppose that f and g are non-constant differentiable real valued functions on R.
If for every $x, y \in R, f(x+y)=f(x) f(y)-g(x) g(y), g(x+y)=g(x) f(y)+f(x) g(y)$ and $\mathrm{f}^{\prime}(0)=0$ then prove that $\{\mathrm{f}(\mathrm{x})\}^{2}+\{\mathrm{g}(\mathrm{x})\}^{2}=1 \quad \forall \mathrm{x} \in \mathrm{R}$.
Sol We have $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x+0)}{h}$

$$
\begin{align*}
& =\lim _{h \rightarrow 0} \frac{\{f(x) f(h)-g(x) g(h)\}-\{f(x) f(0)-g(x) g(0)\}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x)(f(h)-f(0))}{(h-0)}-\lim _{h \rightarrow 0} \frac{g(x)(g(h)-g(0))}{(h-0)} \\
& =f(x) f^{\prime}(0)-g(x) g^{\prime}(0) \\
& =0-\mathrm{g}(\mathrm{x}) \mathrm{g}^{\prime}(0) \quad\left(\because \mathrm{f}^{\prime}(0)=0\right) \\
& \therefore \quad \mathrm{f}^{\prime}(\mathrm{x})=-\mathrm{g}(\mathrm{x}) \mathrm{g}^{\prime}(0) \tag{1}\\
& \text { and } \quad g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x+0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\{g(x) f(h)+f(x) g(h)\}-\{g(x) f(0)+f(x) g(0)\}}{h} \\
& =g(x) \lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h-0}+f(x) \lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h-0} \\
& =g(x) f^{\prime}(0)+f(x) g^{\prime}(0) \\
& =0+f(x) g^{\prime}(0) \quad\left(\because f^{\prime}(0)=0\right) \\
& =\mathrm{f}(\mathrm{x}) \mathrm{g}^{\prime}(0) \tag{2}
\end{align*}
$$

Multiplying (1) by $f(x)$ and (2) by $g(x)$ and adding we get

$$
f(x) f^{\prime}(x)+g(x) g^{\prime}(x)=0
$$

or $\quad 2 f(x) f^{\prime}(x)+2 g(x) g^{\prime}(x)=0$ on integrating we get

$$
\begin{equation*}
\{\mathrm{f}(\mathrm{x})\}^{2}+\{\mathrm{g}(\mathrm{x})\}^{2}=\mathrm{c} \tag{3}
\end{equation*}
$$

Putting $x=0, y=0$ in the given equation then

$$
\begin{aligned}
& \qquad f(0)=\{f(0)\}^{2}-\{g(0)\}^{2} \quad \text { and } \quad g(0)=2 f(0) g(0) \\
& \text { or } g(0)\{2 f(0)-1\}=0 \quad \text { or } \quad g(0)=0 \text { or } f(0)=\frac{1}{2} \\
& \text { If } g(0)=0 \text {, then } f(0)=(f(0))^{2}-0 \text { or } f(0)=1 \\
& \text { and for } f(0)=\frac{1}{2}, \frac{1}{2}=\left(\frac{1}{2}\right)^{2}-(g(0))^{2}
\end{aligned}
$$

$\Rightarrow \quad(\mathrm{g}(0))^{2}=-\frac{1}{4} \quad \quad$ (Impossible)
Hence $f(0)=1$ and $g(0)=0$ from (3), $\{f(0)\}^{2}+\{g(0)\}^{2}=c$
$\Rightarrow \quad 1+0=\mathrm{c} \quad \therefore \quad \mathrm{c}=1$
Hence $\{f(x)\}^{2}+\{g(x)\}^{2}=1$.

61 Let $f(x)$ be a real valued function not identically zero such that
$f\left(x+y^{n}\right)=f(x)+\{f(y)\}^{n} ; \forall x, y \in R($ where n is odd natural number $>1)$ and $f^{\prime}(0) \geq 0$.
Find out the values of $f^{\prime}(10)$ and $f(5)$.
Sol Given that $\mathrm{f}\left(\mathrm{x}+\mathrm{y}^{\mathrm{n}}\right)=\mathrm{f}(\mathrm{x})+(\mathrm{f}(\mathrm{y}))^{\mathrm{n}}$
Putting $x=y=0 \quad \Rightarrow \quad f(0)=0$

$$
\begin{align*}
\therefore \quad f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lambda(\text { say }) \tag{1}
\end{align*}
$$

Also,

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(0+\left(h^{1 / n}\right)^{n}\right)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(0)+\left\{f\left(h^{1 / n}\right)\right\}^{n}-f(0)}{h} \\
& =\lim _{h \rightarrow 0}\left\{\frac{f\left(h^{1 / n}\right)}{h^{1 / n}}\right\}^{n} \\
& =\lambda^{n} \quad[\text { from }(1)]
\end{aligned}
$$

From (1) and (2), $\quad \lambda=\lambda^{n}$

$$
\begin{array}{ll}
\therefore & \lambda=-1,0,1 \\
\because & f^{\prime}(0) \geq 0 \\
\therefore & f^{\prime}(0)=0,1 \\
\text { Again } & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{array}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f\left(x+\left(h^{1 / n}\right)^{n}\right)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x)+\left(f\left(h^{1 / n}\right)\right)^{n}-f(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f\left(h^{1 / n}\right)}{h^{1 / n}}\right)^{n}=\lambda^{n}
\end{aligned}
$$

For $\lambda=0, f^{\prime}(x)=0$
On intergrating we get $f(x)=c$
At $\quad \mathrm{x}=0, \mathrm{f}(0)=\mathrm{c}=0$

$$
(\because \mathrm{f}(0)=0)
$$

$\therefore \quad \mathrm{f}(\mathrm{x})=0$
which is impossible as $f(x)$ is not identically zero, i.e., $f(x) \neq 0$
and for $\lambda=1 \quad f^{\prime}(x)=1$
On intergrating w.r.t. x and taking limit 0 to x ,
then $\int_{0}^{x} f^{\prime}(x) d x=\int_{0}^{x} 1 . d x$

$$
\Rightarrow \quad \mathrm{f}(\mathrm{x})-\mathrm{f}(0)=\mathrm{x} \quad \Rightarrow \quad \mathrm{f}(\mathrm{x})-(0)=\mathrm{x} \quad(\because \mathrm{f}(0)=0)
$$

Hence $f(x)=x$ and $f^{\prime}(x)=1 \quad \therefore \quad f^{\prime}(10)=1$ and $f(5)=5$.

62 Let $a_{1}>a_{2}>a_{3}$ \qquad $\mathrm{a}_{\mathrm{n}}>1 ; \mathrm{p}_{1}>\mathrm{p}_{2}>\mathrm{p}_{3} \ldots \ldots \ldots$. $>\mathrm{p}_{\mathrm{n}}>0 ;$ such that $\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}+\ldots \ldots+\mathrm{p}_{\mathrm{n}}=1$
Also $\mathrm{F}(\mathrm{x})=\left(\mathrm{p}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}\right)^{1 / \mathrm{x}}$. Compute
(a) $\operatorname{Lim}_{x \rightarrow 0^{+}} F(x)$
(b) $\operatorname{Lim}_{x \rightarrow \infty} F(x)$
(c) $\operatorname{Lim}_{x \rightarrow-\infty} F(x)$
[Ans. (a) $\mathrm{a}_{1}^{\mathrm{p}_{1}} \cdot \mathrm{a}_{2}^{\mathrm{p}_{2}} \ldots . . \mathrm{a}_{\mathrm{n}}^{\mathrm{p}_{\mathrm{n}}} ;$ (b) $\mathrm{a}_{1} ;$ (c) a_{n}]
[Sol.
(1) $\operatorname{Lim}_{x \rightarrow 0^{+}} F(x)=\operatorname{Lim}_{x \rightarrow 0^{+}}\left(p_{1} a_{1}^{x}+p_{2} a_{2}^{x}+\ldots \ldots .+p_{n} a_{n}^{x}\right)^{1 / x} \quad\left(1^{\infty}\right.$ form $)$

$$
1_{1}=\mathrm{e}^{l} \text { where } l=\operatorname{Lim}_{\mathrm{x} \rightarrow 0} \frac{\mathrm{p}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}-1}{\mathrm{x}} \quad\left(\frac{0}{0}\right)
$$

using L'Hospital's Rule

$$
\begin{aligned}
l & =\operatorname{Lim}_{\mathrm{x} \rightarrow 0}\left(\mathrm{p}_{1} \ln \mathrm{a}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \ln \mathrm{a}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \ln \mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}\right) \\
& =\mathrm{p}_{1} \ln \mathrm{a}_{1}+\mathrm{p}_{2} \ln \mathrm{a}_{2}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \ln \mathrm{a}_{\mathrm{n}} \\
& =\ln \left(\mathrm{a}_{1}^{\mathrm{p}_{1}} \cdot \mathrm{a}_{2}^{\mathrm{p}_{2}} \ldots . . \mathrm{a}_{\mathrm{n}}^{\mathrm{p}_{\mathrm{n}}}\right) \\
\therefore \quad \quad \mathrm{L}_{1} & =\mathrm{e}^{l}=\mathrm{a}_{1}^{\mathrm{p}_{1}} \cdot \mathrm{a}_{2}^{\mathrm{p}_{2}} \ldots . . \mathrm{a}_{\mathrm{n}}^{\mathrm{p}_{\mathrm{n}}} \text { Ans. }
\end{aligned}
$$

(2) $\operatorname{Lim}_{\mathrm{x} \rightarrow \infty} \mathrm{F}(\mathrm{x})=\mathrm{L}_{2}=\operatorname{Lim}_{\mathrm{x} \rightarrow \infty}\left(\mathrm{p}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}\right)^{1 / \mathrm{x}} \quad\left(\infty^{0}\right.$ form) [only when $\mathrm{a}_{1} \mathrm{a}_{2}$ etc. >1 1]
$\therefore \quad \ln \mathrm{L}_{2}=\operatorname{Lim}_{\mathrm{x} \rightarrow \infty} \frac{\ln \left(\mathrm{p}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}\right)}{\mathrm{x}}$
using L'Hospital's Rule

$$
\begin{equation*}
2=\operatorname{Lim}_{\mathrm{x} \rightarrow \infty} \frac{\left(\mathrm{p}_{1} \ln \mathrm{a}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \ln \mathrm{a}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \ln \mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}\right)}{\mathrm{p}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}} \tag{1}
\end{equation*}
$$

dividing by $\mathrm{a}_{1}^{\mathrm{x}}$ and taking limit, we get

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \infty},\left(\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}\right)^{\mathrm{x}},\left(\frac{\mathrm{a}_{3}}{\mathrm{a}_{2}}\right)^{\mathrm{x}}, \text { etc all vanishes as } \mathrm{x} \rightarrow \infty \\
& =\frac{\mathrm{p}_{1} \ln \mathrm{a}_{1}}{\mathrm{p}_{1}}=\ln \mathrm{a}_{1}
\end{aligned}
$$

hence $\ln \mathrm{L}_{2}=\ln \mathrm{a}_{1} \quad \Rightarrow \quad \mathrm{~L}_{2}=\mathrm{a}_{1}$ Ans.
(3)

$$
\operatorname{Lim}_{x \rightarrow-\infty} F(x)=L_{3} \text { (say) }
$$

$$
\therefore \quad \ln \mathrm{L}_{3}=\operatorname{Lim}_{\mathrm{x} \rightarrow-\infty} \frac{\left(\mathrm{p}_{1} \ln \mathrm{a}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \ln \mathrm{a}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \ln \mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}\right)}{\mathrm{p}_{1} \mathrm{a}_{1}^{\mathrm{x}}+\mathrm{p}_{2} \mathrm{a}_{2}^{\mathrm{x}}+\ldots \ldots .+\mathrm{p}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}^{\mathrm{x}}}
$$

dividing by $\left(a_{n}\right)^{x}$ and taking $\operatorname{Lim}_{x \rightarrow-\infty},\left(\frac{a_{1}}{a_{n}}\right)^{x},\left(\frac{a_{2}}{a_{n}}\right)^{x}$ etc vanishes

$$
\therefore \quad \ln \mathrm{L}_{3}=\frac{\mathrm{p}_{\mathrm{n}} \ln \mathrm{a}_{\mathrm{n}}}{\mathrm{p}_{\mathrm{n}}} \quad \Rightarrow \quad \mathrm{~L}_{3}=\mathrm{a}_{\mathrm{n}}
$$

63 Let $\mathrm{f}: \mathrm{R}^{+} \rightarrow \mathrm{R}$ be a differentiable function with $\mathrm{f}(1)=3$ and satisfying :

$$
\int_{1}^{\mathrm{xy}} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{y} \int_{1}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}+\mathrm{x} \int_{1}^{\mathrm{y}} \mathrm{f}(\mathrm{t}) \mathrm{dt} ; \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}^{+}
$$

then find $f(x)$.
Sol We have $\int_{1}^{x y} f(t) d t=y \int_{1}^{x} f(t) d t+x \int_{1}^{y} f(t) d t$
Differentiating both sides w.r.t. x treating y as constant; we get

$$
f(x y) \cdot y=y f(x)+\int_{1}^{y} f(t) d t
$$

Putting $x=1$, we get $y f(y)=y f(1)+\int_{1}^{y} f(t) d t$

$$
\Rightarrow \quad y f(y)=3 y+\int_{1}^{y} f(t) d t
$$

$$
(\because \mathrm{f}(1)=3)
$$

Again differentiating both sides w.r.t. y, we get

$$
\begin{aligned}
& \mathrm{yf}^{\prime}(\mathrm{y})+\mathrm{f}(\mathrm{y}) \cdot 1=3+\mathrm{f}(\mathrm{y}) \\
\Rightarrow & \mathrm{f}^{\prime}(\mathrm{y})=\frac{3}{y}
\end{aligned}
$$

Integrating both sides w.r.t. y with limit 1 to x then

$$
\begin{gathered}
y f^{\prime}(1)=3 \ln x-3 \ln 1 \\
f(x)-f(1)=3 \ln x-3 \ln 1 \\
\Rightarrow \quad f(x)-3=3 \ln x-0
\end{gathered} \quad(\because f(1)=3)
$$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{f}(\mathrm{x}) & =3+3 \ln \mathrm{x} \\
& =3 \ln \mathrm{e}+3 \ln \mathrm{x}=3 \ln (\mathrm{ex})
\end{aligned}
$$

Hence $f(x)=3 \ln (e x)$.

64 Let $f\left(x^{m} y^{n}\right)=m f(x)+n f(y) \forall x, y \in R^{+}$and $\forall m, n \in R$. If $f^{\prime}(x)$ exists and has the value $\frac{e}{x}$, then find $\lim _{x \rightarrow 0} \frac{f(1+x)}{x}$.

Sol $\quad \because \quad f\left(x^{m} y^{n}\right)=m f(x)+n f(y)$
Putting $\mathrm{x}=\mathrm{y}=\mathrm{m}=\mathrm{n}=1$, then $\mathrm{f}(1)=\mathrm{f}(1)+\mathrm{f}(1)$
$\Rightarrow \quad \mathrm{f}(1)=0$
$\therefore \quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f\left(x\left(1+\frac{h}{x}\right)\right)-f(x \cdot 1)}{h}$ $=\lim _{h \rightarrow 0} \frac{f\left\{\left(x^{1 / m}\right)^{m}\left\{\left(1+\frac{h}{x}\right)^{1 / n}\right\}\right\}-f\left\{\left(x^{1 / m}\right)^{m}\left((1)^{1 / n}\right)^{n}\right\}}{h}$ $=\lim _{h \rightarrow 0} \frac{\operatorname{mf}\left(x^{1 / m}\right)+\operatorname{nf}\left\{\left(1+\frac{h}{x}\right)^{1 / n}\right\}-\operatorname{mf}\left(x^{1 / m}\right)-\operatorname{nf}(1)}{h}$ $=\lim _{h \rightarrow 0} \frac{\operatorname{nf}\left\{\left(1+\frac{h}{x}\right)^{1 / n}\right\}}{h}$ $=\lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)}{x\left(\frac{h}{x}\right)} \quad \quad\left(\right.$ Putting $y=1$ in (1) then $\left.f\left(x^{m}\right)=m f(x)\right)$
$\Rightarrow \frac{e}{x}=\frac{1}{x} \lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)}{\left(\frac{h}{x}\right)} \quad \Rightarrow \quad \lim _{h \rightarrow 0} \frac{f\left(1+\frac{h}{x}\right)}{\left(\frac{h}{x}\right)}=e$
Hence $\lim _{h \rightarrow 0} \frac{f(1+x)}{x}=e$

65 Let f be a continuous and differentiable function in $\left(x_{1}, x_{2}\right)$. If $f(x) \cdot f^{\prime}(x) \geq x \sqrt{1-(f(x))^{4}}$
and $\lim _{x \rightarrow x_{1}^{x}}(f(x))^{2}=1$ and $\lim _{x \rightarrow x_{2}^{-}}(f(x))^{2}=\frac{1}{2}$ for $x \in\left(x_{1}, x_{2}\right)$, then prove that $x_{1}^{2}-x_{2}^{2} \geq \frac{\pi}{3}$ (assume that $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ holds everywhere).
Sol Given $\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}^{\prime}(\mathrm{x}) \geq \mathrm{x} \sqrt{1-(\mathrm{f}(\mathrm{x}))^{4}}$

$$
\begin{array}{ll}
\Rightarrow & \frac{f(x) f^{\prime}(x)}{\sqrt{1-(f(x))^{4}}}-x \geq 0 \quad \text { or } \quad \frac{2 f(x) f^{\prime}(x)}{\sqrt{1-(f(x))^{4}}}-2 x \geq 0 \\
\text { or } & \frac{d}{d x}\left\{\sin ^{-1}(f(x))^{2}-x^{2}\right\} \geq 0 \\
\Rightarrow & F(x)=\sin ^{-1}(f(x))^{2}-x^{2} \text { is a non decreasing function. } \\
\Rightarrow \quad \lim _{x \rightarrow x_{1}^{+}} F(x) \leq \lim _{x \rightarrow x_{2}^{x}} F(x) \\
\Rightarrow \quad \lim _{x \rightarrow x_{1}^{+}}\left\{\sin ^{-1}(f(x))^{2}-x^{2}\right\} \leq \lim _{x \rightarrow x_{2}^{-}}\left\{\sin ^{-1}(f(x))^{2}-x^{2}\right\} \\
\Rightarrow \quad \frac{\pi}{2}-x_{1}^{2} \leq \frac{\pi}{6}-x_{2}^{2} \quad \Rightarrow \quad x_{1}^{2}-x_{2}^{2} \geq \frac{\pi}{3} .
\end{array}
$$

66 Are there any non-constant differentiable functions $f: R \rightarrow R$ such that $\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))=\mathrm{f}(\mathrm{x}) \geq 0 \forall \mathrm{x} \in \mathrm{R}$?

Sol Given $f(f(f(x)))=f(x)$
Applying f to both sides of the equation (1), then

$$
\begin{equation*}
\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))=\mathrm{f}\{\mathrm{f}(\mathrm{x})\} \tag{2}
\end{equation*}
$$

If $g(x)=f(f(x)) \forall x \in R$ then equation (2) can be written as $g(g(x))=g(x) ; g$ is also a differentiable function on R and $g(x) \geq 0 \quad \forall x \in R$.

Then the range $T=g(R)$ of g is an interval in $[0, \infty)$. Let a be the infimum of T.
Since $g(t)=t$ for all $t \in T$ and g is continuous.
$\Rightarrow \quad \mathrm{g}(\mathrm{a})=\mathrm{a}$
Assume T has more than one element. Choose $\delta>0$ such that $(\mathrm{a}, \mathrm{a}+\delta \subseteq \mathrm{T})$.
Then $x \in(a-\delta, a)$

$$
\begin{align*}
& \Rightarrow \quad \mathrm{g}(\mathrm{x}) \geq \mathrm{g}(\mathrm{a})=\mathrm{a} \quad \therefore \quad \frac{\mathrm{~g}(\mathrm{x})-\mathrm{g}(\mathrm{a})}{\mathrm{x}-\mathrm{a}} \leq 0 \\
& \therefore \quad \operatorname{Lg}^{\prime}(a)=\lim _{x \rightarrow a-} \frac{g(x)-g(a)}{x-a} \leq 0 \\
& =\lim _{h \rightarrow 0} \frac{g(a-h)-g(a)}{-h} \leq 0 \tag{3}
\end{align*}
$$

For $x \in(a, a+\delta)$ we have $\quad \frac{g(x)-g(a)}{x-a}=1$
Hence $\quad \operatorname{Rg}^{\prime}(a)=\lim _{x \rightarrow a+} \frac{g(x)-g(a)}{x-a}=1$
As g is differentiable at a, therefore (3) and (4) are contradictory. This concludes that T is a single point i.e., g is a constant function,

$$
\begin{array}{ll}
& g(x)=c \quad x \in R \\
\text { from }(1), \quad & f(c)=f(x) \forall x \in R
\end{array}
$$

This shows that f is a constant function. Thus there is no non-constant differentiable function satisfying (1).

67 Let $f(x)=x^{3}-3 x^{2}+6 \forall x \in R$ and

$$
g(x)=\left\{\begin{array}{c}
\max \{f(t): x+1 \leq t \leq x+2,-3 \leq x<0\} \\
1-x, \quad \text { for } \quad x \geq 0
\end{array}\right.
$$

Test continuity of $g(x)$ for $x \in[-3,1]$.
Sol Since $f(x)=x^{3}-3 x^{2}+6$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x}) & =3 \mathrm{x}^{2}-6 \mathrm{x} \\
& =3 \mathrm{x}(\mathrm{x}-2)
\end{aligned}
$$

for maximum and minima $f^{\prime}(x)=0$

$$
\begin{array}{lll}
\therefore & \mathrm{x}=0,2 & \\
& \mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}-6 & \\
& \mathrm{f}^{\prime \prime}(0)=-6<0 & \text { (local maxima at } \mathrm{x}=0) \\
& \mathrm{f}^{\prime \prime}(2)=6>0 & \text { (local minima at } \mathrm{x}=2)
\end{array}
$$

Cut off x-axis $x^{3}-3 x^{2}+6=0$ has maximum 2 positive and 1 negative real roots.
Cut off y-axis. $F(0)=6$.
Now graph of $f(x)$ is :

Clearly $f(x)$ is increasing in $(-\infty, 0) \cup(2, \infty)$ and decreasing in $(0,2)$
$\Rightarrow \quad \mathrm{x}+2<0 \quad \Rightarrow \quad \mathrm{x}<-2 \quad \Rightarrow \quad-3 \leq \mathrm{x}<-2$
$\Rightarrow \quad-2 \leq x+1<-1 \quad$ and $\quad-1 \leq x+2<0$
in both cases $f(x)$ increases (maximum) of $g(x)=f(x+2)$
$\therefore \quad \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x}+2) ;-3 \leq \mathrm{x}<-2$
and if $\mathrm{x}+1<0$ and $0 \leq \mathrm{x}+2<2 \quad \Rightarrow \quad-2 \leq \mathrm{x}<-1$
then $g(x)=f(0)$
Now for $\mathrm{x}+1 \geq 0$ and $\mathrm{x}+2<2 \quad \Rightarrow \quad-1 \leq \mathrm{x}<0, \mathrm{~g}(\mathrm{x})=\mathrm{f}(\mathrm{x}+1)$
Hence $\quad g(x)=\left\{\begin{array}{cll}f(x+2) & ;-3 \leq x<-2 \\ f(0) & ;-2 \leq x<-1 \\ f(x+1) & ;-1 \leq x<-0 \\ 1-x & ; x \geq 0\end{array}\right.$
Hence $\mathrm{g}(\mathrm{x})$ is continuous in the interval $[-3,1]$.
$68 \quad f:[0,1] \rightarrow \mathrm{R}$ is defined as $f(\mathrm{x})=\left[\begin{array}{ll}\mathrm{x}^{3}(1-\mathrm{x}) \sin \left(\frac{1}{\mathrm{x}^{2}}\right) & \text { if } 0<\mathrm{x} \leq 1 \\ 0 & \text { if } \mathrm{x}=0\end{array}\right.$, then prove that
(a) $\quad f$ is differentiable in $[0,1]$
(b) $\quad f$ is bounded in $[0,1]$
(c) $\quad f^{\prime}$ is bounded in $[0,1]$

Sol. $f(\mathrm{x})=\left[\begin{array}{ll}\mathrm{x}^{3}(1-\mathrm{x}) \sin \left(\frac{1}{\mathrm{x}^{2}}\right) & \text { if } 0<\mathrm{x} \leq 1 \\ 0 & \text { if } \mathrm{x}=0\end{array}\right.$
$f^{\prime}\left(0^{+}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{h^{3}(1-h) \sin \frac{1}{h^{2}}-0}{h}=0$
$f^{\prime}\left(1^{-}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{(1-h)^{3}(+h) \sin \frac{1}{(1-h)^{2}}-0}{-h}=\operatorname{Lim}_{h \rightarrow 0}-(1-h)^{3} \sin \frac{1}{(1-h)^{2}}=-\sin 1$
Hence f is derivable in $[0,1]$, obviously f is continuous in $[0,1]$ hence f is bounded
hence $f^{\prime}(x)=\left[\begin{array}{l}\left(x^{3}-x^{4}\right) \cos \left(\frac{1}{x^{2}}\right)\left(-\frac{2}{x^{3}}\right)+\sin \frac{1}{x^{2}}\left(3 x^{2}-4 x^{3}\right) x \neq 0 \\ 0 \\ 0\end{array}\right.$ if $x=0.0$
$\operatorname{Lim}_{x \rightarrow 1^{-}}=(0)+\sin 1(3-4), \quad$ hence f ' is also bounded.

69 Discuss the continuity of f in $[0,2]$ where $f(x)=\left[\begin{array}{lll}4 x-5 \mid[x] & \text { for } & x>1 \\ {[\cos \pi x]} & \text { for } & x \leq 1\end{array}\right.$; where $[x]$ is the greatest integer not greater than x .

Sol. $f(x)= \begin{cases}|4 x-5|[x] & \text { for } 1<x \leq 2 \\ {[\cos \pi x]} & \text { for } \\ 0 & \text { if } x=0 \\ 0 & \text { if } 0<x \leq \frac{1}{2} \\ -1 & \text { if } \frac{1}{2}<x \leq 1 \\ (5-4 x) & \text { if } 1<x<\frac{5}{4} \\ (4 x-5) & \text { if } \frac{5}{4} \leq x<2 \\ 6 & \text { if } x=2\end{cases}$

Clearly $f(x)$ is discont. for $x=0,1 / 2,1 \& 2$.
70 If $f(x)=x+\{-x\}+[x]$, where [x] is the integral part \& $\{x\}$ is the fractional part of x. Discuss the continuity of f in $[-2,2]$.
Sol. $\quad \mathrm{f}(\mathrm{x})=\mathrm{x}+\{-\mathrm{x}\}+[\mathrm{x}]$
if $\mathrm{n}<\mathrm{x}<\mathrm{n}+1$, then $\mathrm{f}(\mathrm{x})=2 \mathrm{n}+1$
$\{$ as for nonintegral values $\{-\mathrm{x}\}=1-\mathrm{x}+[\mathrm{x}]$ and $[\mathrm{x}]=\mathrm{n}\}$
if $x=n$, then $f(x)=2 n$
Hence $f(x)=\left\{\begin{array}{ccc}2 n & \text { if } & x=n \\ 2 n+1 & \text { if } & n<x<n+1 \\ 2 n+2 & \text { if } & x=n+1\end{array}\right.$

