IX Polynomials

Exercise Solutions

Level -1

1. The degree of $\sqrt{3} x^{3}-5 x+\sqrt{7} x^{5}$ is
(a) 2
(b) 1
(C) 5
(d) 3

Answer:- as the highest power of x is 5 in the given polynomial will be equal to 5
2. The degree of $\sqrt{3} x^{3}-5 x+\sqrt{7} x^{-5}$ is
(a) 3
(b) 1
(c) -5
(d) none

Given expression is not a polynomial as it contains term with negative power of x
3. The coefficient form of $x^{3}+3 x-1$ is
(a) $1,3,-1$
(b) $1,0,3,-1$
(c) $-1,3,1$
(d) $1,0,0,-1$

Coefficient of x cube is 1 and coefficient of X is 3 and coefficient of X raised to 0 is -1 so answer will be option A
4. The value of the polynomial $p(x)=x^{3}-3 x^{2}+4 x-5$ at $x=-1$
(a) -1
(b) -13
(c) 3
(d) 1

If we put value of x as -1 in the given polynomial then the value will be is equals to -13
5. Express the following in index form taking x as a variable. $(-2,3,-5,6)$
(a) $-2 x^{4}+3 x-5 x+6$
(b) $-2 x+3 x^{2}-5 x^{3}+6$
(c) $-2 x^{2}-3 x-5+6$
(d) $-2 x^{3}+3 x^{2}-5 x+6$

If we put given coefficients with respective index of x then we will get $-2 x^{3}+3 x^{2}-5 x+6$
6. The polynomial $p(x)=x^{2}+4 x-n x-5$ is
(a) Binomial
(b) Monomial
(c) Trinomial
(d) None

Answer - None
7. The G.C.D. of $x^{3}-x^{2}-4 x-6$ and $x^{2}-2 x-3$ is
(a) $3 x+2$
(b) $x-3$
(c) $-x-3$
(d) $-2 x-3$

Let $\mathrm{f}(\mathrm{x})=\mathrm{x} 3-\mathrm{x} 2-4 \mathrm{x}-6=(\mathrm{x}-3)(\mathrm{x} 2+2 \mathrm{x}+2)$
and $g(x)=x 2-2 x-3=(x+1)(x-3)$
Hence GCD of $f(x)$ and $g(x)$ is ($x-3$)
8. If $x+y=a$ and $x y=b$, then the value of $\frac{1}{x^{3}}+\frac{1}{y^{3}}$ is
(a) $\frac{a^{3}-3 a b}{b^{3}}$
(b) $\frac{a^{3}-3 a}{b^{3}}$
(c) $\frac{a^{3}-3}{b}$
(d) $\frac{a^{3}-3}{b^{2}}$
$x+y=a$
$x y=b$
Dividing equation (1) by equation (2) we get
$\frac{x+y}{x y}=\frac{a}{b}$
$\Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{a}{b}$
Now
$\frac{1}{x^{2}}+\frac{1}{y^{2}}-\frac{1}{x y}=\left(\frac{1}{x}\right)^{2}+\left(\frac{1}{y}\right)^{2}+\frac{2}{x y}-\frac{3}{x y}=\left(\frac{1}{x}+\frac{1}{y}\right)^{2}-\frac{3}{x y}=\frac{a^{2}}{b^{2}}-\frac{3}{b}=\frac{a^{2}-3 b}{b^{2}}$
Now
$\frac{1}{x^{3}}+\frac{1}{y^{3}}=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}-\frac{1}{x y}\right)=\frac{a}{b} \times \frac{\left(a^{2}-3 b\right)}{b^{2}}=\frac{a\left(a^{2}-3 b\right)}{b^{3}}$
9. If $x=3, y=4$ and $z=-7$, then $x^{3}+y^{3}+z^{3}-3 x y z$ is equal to
(a) 6
(b) 0
(c) 2
(d) 8

Put the values $\mathrm{x}=3, \mathrm{y}=4$ and $\mathrm{z}=-7$ in given expression and get the answer
10. Factors of $2(a+b)^{2}-9(a+b)-5$ are
(a) $a+b+5,2 a+2 b-1$
(b) $a+b-5,2 a+2 b+1$
(c) $a-b+5,2 a-2 b+5$
(d) none of these
$2(a+b)^{2}-9(a+b)-5=0$
$\Rightarrow 2(\mathrm{a}+\mathrm{b})^{2}-10(\mathrm{a}+\mathrm{b}+1(\mathrm{a}+\mathrm{b})-5=0$
$\Rightarrow 2(a+b)(a+b-5)+1(a+b-5)=0$
taking $(\mathrm{a}+\mathrm{b}-5)$ common ,
$\Rightarrow(a+b-5)[2(a+b)+1]=0$
$\Rightarrow(\mathrm{a}+\mathrm{b}-5)(2 \mathrm{a}+2 \mathrm{~b}+1)=0$
11. If $x^{2}-\frac{1}{(x-2)^{2}}=4-\frac{1}{(x-2)^{2}}$, then x is equal to
(a) 1
(b) 4
(c) -1
(d) none of these

Answer:- $x^{2}=4$

$$
x=+2 \text { or }-2
$$

so (d) none of these
12. If $\begin{aligned} x+\frac{1}{x} & =2 \\ \text {, then } & x^{2}+\frac{1}{x^{2}}\end{aligned}$ is equal to
(a) 2
(b) 0
(c) 4
(d) 6
$x+\frac{1}{x}=2$

Squaring both sides we get
$x^{2}+2+1 / x^{2}=4$
$x^{2}+\frac{1}{x^{2}}=4-2=2$
13. If the expression $\left(125-x^{3}\right)=(5-x)\left(x^{2}+a x+b\right)$, then the value of a is
(a) 4
(b) 2
(c) -7
(d) 5

We know that,

$$
\begin{aligned}
& 125-x^{3} \\
= & (5)^{3}-(x)^{3} \\
= & (5-x)\left[(5)^{2}+5 x+(x)^{2}\right] \\
= & (5-x)\left(x^{2}+5 x+25\right) \ldots(1)
\end{aligned}
$$

but it is given that,
$125-x^{3}=(5-x)\left(x^{2}+a x+b\right)$
From (1) and (2), we get
$a=5$ and $b=25$
14. If one root of the equation $3 x^{2}-9 x=k x-k$ is 2 , then the value of k is
(a) 4
(b) 3
(c) -6
(d) -8

Let the two roots be $(2, \alpha)$ of the given equation.
The equation is
$3 x^{2}-9 x=k x-k$
$\Rightarrow 3 x^{2}-(9+k) x+k=0$
$\therefore \quad 2+\alpha=\frac{9+k}{3}$
$\Rightarrow \quad \alpha=\frac{3+k}{3}---(1)$
Again $\quad 2 \times \alpha=\frac{k}{3}$
$\therefore \quad \alpha=\frac{k}{6}---(2)$
from (1) and (2) we get

$$
\frac{3+k}{3}=\frac{k}{6}
$$

$$
\Rightarrow \quad k=-6 \quad(A n s)
$$

15. If x and y are positive with $\mathrm{x}-\mathrm{y}=2$ and $\mathrm{xy}=24$, then $\frac{1}{x}+\frac{1}{y}$ is equal to
(a) $\frac{5}{12}$
(b) $\frac{1}{12}$
(c) $\frac{1}{6}$
(d) $\frac{25}{6}$
$x=6, y=4$
then $x-y=2$
$6-4=2$
x*y=24
$6 * 4=24$
$=1 / 6+1 / 4$
$=10 / 24$
$=5 / 12$
therefore $1 / X+1 / y=5 / 12$
16. The H.C.F of two expressions is x and their L.C.M. is $x^{3}-9 x$. If one of the expressions is $x^{2}+3 x$, then the other expression is
(a) $x^{2}-3 x$
(b) $x^{3}-3 x$
(c) $x^{2}+9 x$
(d) $x^{2}-9 x$

We knopw that HCF $\times \mathrm{LCM}=$ product of numbers
$\mathrm{x} \times\left(\mathrm{x}^{3}-9 \mathrm{x}\right)=\left[\mathrm{x}^{2}+3 \mathrm{x}\right] \times$ second expression
second expression $=\frac{x \times\left(x^{3}-9 x\right)}{\left[x^{2}+3 x\right]}=\frac{x^{2}\left(x^{2}-9\right)}{x(x+3)}$
$=\frac{\mathrm{x}(\mathrm{x}+3)(\mathrm{x}-3)}{(\mathrm{x}+3)}=\mathrm{x}^{2}-3 \mathrm{x}$
17. The value of k for which $x+k$ is a factor of $x^{3}+k x^{2}-2 x+k+4$ is
(a) $\frac{-4}{3}$
(b) -5
(c) 2
(d) $\frac{6}{7}$

Since $(\mathrm{x}+\mathrm{k})$ is a factor of the polynomial $x^{3}+k x^{2}-2 x+k+4$
Hence, $x=-k$ must be the zero of this polynomial.
Hence, from factor theorem, we have
$(-k)^{3}+k(-k)^{2}-2(-k)+t+4=0$
$-k^{3}+k^{3}+2 k+k+4=0$
$3 k+4=0$
$k=-\frac{4}{3}$

Therefore, the value of k is $-4 / 3$
18. $(x+y)^{3}-(x-y)^{3}$ can be factorized as
(a) $2 y\left(3 y^{2}+x^{2}\right)$
(b) $2 y\left(3 x^{2}+y^{2}\right)$
(c) $2 x\left(3 x^{2}+y^{2}\right)$
(d) $2 x\left(x^{2}+3 y^{2}\right)$

Use the formula $a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$
Put $a=(x+y) \quad b=(x-y)$
$(x+y)^{3}-(x-y)^{3}$
$8 y^{3}+3(x+y)(x-y)(2 y)$
$\Rightarrow 2 y\left(3 x^{2}+y^{2}\right)$
19. If the G.C.D. of $x^{2}-a x-6$ and $x^{2}-2 x+b$ is $x-6$, then the value of a and b is
(a) $a=6, b=-24$
(b) $a=5, b=-24$
(c) $a=-5, b=-24$
(d) $a=-5, b=24$

As x-6 is factor the we will put x-6 $=0$
$x=6$ in both expression and equating to zero
$6^{2}-6 a-6=0$
$36-6 a-6=0$
$\mathrm{a}=5$
$6^{2}-2 \mathrm{x} 6+\mathrm{b}=0$
$36-12+b=0$
$b=-24$
20. The H.C.F. of $8 x^{3}-32 x^{2}+40 x-16$ and $4 x^{3}-24 x^{2}+36 x-16$, is
(a) $4(x-1)^{2}$
(b) $4(x+1)^{2}$
(c) $(x-1)^{2}$
(d) $(x+1)^{2}$

Factorize both given expressions and we can clearly see option $\mathrm{c} \& \mathrm{~d}$ are not possible options
And $x+1$ will not be the factor of both expressions
So A will be correct option

Level - 2

SINGLE CORRECT ANSWER TYPE

1. The polynomials $a x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+$ a when divided by $(x-4)$ leaves remainders R_{1} and R_{2} respectively then value of a if $2 R_{1}-R_{2}=0$
(a) $-\frac{18}{127}$
(b) $\frac{18}{127}$
(c) $\frac{17}{127}$
(d) $-\frac{17}{127}$

Let the remainder be R1 and R2 as given :
$\mathrm{R} 1=\mathrm{ax} \wedge 3+3 \mathrm{x}^{\wedge} 2-3$
Now, $x-4=>x=4$
$\mathrm{R} 1=\mathrm{a}(4)^{\wedge} 3+3(4)^{\wedge} 2-3$
$R 1=64 a+48-3$
$R 1=64 a+45$
$\mathrm{R} 2=2 \mathrm{x}^{\wedge} 2-5 \mathrm{x}+\mathrm{a}$
$\mathrm{R} 2=2(4)^{\wedge} 2-5(4)+\mathrm{a}$
$\mathrm{R} 2=32-20+\mathrm{a}$
$\mathrm{R} 2=12+\mathrm{a}$
$\mathrm{R} 1+\mathrm{R} 2=0$
$64 a+45+12+a=0$
$65 a=-57$
$a=-57 / 65$
$2 \mathrm{R} 1-\mathrm{R} 2=0$
$2(64 a+45)-12-a=0$
$128 a+90-12-a=0$
$127 a=-78$
$\mathrm{a}=-78 / 127$
2. If $2 x^{2}+x y-3 y^{2}+x+a y-10=(2 x+3 y+b)(x-y-2)$, then the values of a and b are
(a) 11 and 5
(b) 1 and -5
(c) -1 and -5
(d) -11 and 5
$2 x^{2}+x y-3 y^{2}+x+a y-10=(2 x+3 y+b)(x-y-2)$
$\Rightarrow 2 x^{2}+x y-3 y^{2}+x+a y-10=2 x^{2}-2 x y-4 x+3 x y-3 y^{2}-6 y+b x-b y-2 b$
$\Rightarrow 2 x^{2}+x y-3 y^{2}+x+a y-10=2 x^{2}+x y-3 y^{2}+x(-4+b)+y(-6-b)-2 b$
Compairing both side the coef ficient of x, y, we have,

$$
\begin{aligned}
& -4+b=1 \Rightarrow b=5 \\
& -6-b=a \\
& \Rightarrow-6-5=a \Rightarrow a=-11
\end{aligned}
$$

Hence, $a=-11$ and $b=5$
3. The value of $\frac{(1.5)^{3}+(4.7)^{3}+(3.8)^{3}-3 \times 1.5 \times 4.7 \times 3.8}{(1.5)^{2}+(4.7)^{2}+(3.8)^{2}-1.5 \times 4.7-1.5 \times 3.8-4.7 \times 3.8}$ is
(a) 8
(b) 9
(c) 10
(d) 11

$$
\frac{a^{3}+b^{3}+c^{3}-3 a b c}{a^{2}+b^{2}+c^{2}-a b-b c-c a}
$$

$$
=\frac{\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]}{\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]}=(a+b+c)
$$

For $a=1.5, b=4.7, c=3.8$ value is $1.5+4.7+3.8=10$
4. If $(x+y+z)=, x y+y z+z x=-1, x y z=-1$ then value of $x^{3}+y^{3}+z^{3}$ is
(a) -1
(b) 1
(c) 2
(d) -2

Identity: $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
Since $x+y+z=1, x y+y z+z x=-1$ and $x y z=-1$,

Putting values, we get:
So ${ }^{x^{3}+y^{3}+z^{3}-3 x(-1)}=1\left(x^{2}+y^{2}+z^{2}-(-1)\right)$
$x^{3}+y^{3}+z^{3}=x^{2}+y^{2}+z^{2}-2$ \qquad (i)

Now
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
$1^{2}=x^{2}+y^{2}+z^{2}+2(-1)$
$x^{2}+y^{2}+z^{2}=3$
Put in eq (i)
$x^{3}+y^{3}+z^{3}=3-2=1$
5. What property makes this equation true $? 6 a^{2}-2 a=2 a(3 a-1)$
(a) The commutative property
(b) The reflexive property
(c) The associative property
(d) The distributive property
\Rightarrow D

MULTIPLE CORRECT ANSWER TYPE

This section contains multiple choice questions. Each question has 4 choices (a), (b), (c), (d), out of which ONE or MORE is correct. Choose the correct options.
6. If $x=\frac{a}{2}$, which of the following is/are not the value(s) of $4 x 2+8 x+18$
(a) $a^{2}+2 a+8$
(b) $a^{2}+3 a+18$
(c) $a^{2}+4 a+18$ (d) $a^{2}+5 a+18$
\Rightarrow ONLY OPTIONS A, B, D SATISFIES ${ }^{x=\frac{a}{2}}$
7. The polynomial $x^{3}+a x^{2}+b x+6$ has $x-2$ as a factor and leaves a remainder 3 , when divided by $x-3$. Then the values of
(a) $a=-4$
(b) $\mathrm{a}=3$
(c) $\mathrm{b}=1$
(d) $\mathrm{b}=3$

Given that ($x-2$) is a factor of polynomial
$P(x)=x^{3}+a x^{2}+b x+6$
Also when divided by $(x-3)$ leaves a remainder 3 .
we have to find the value of \mathbf{a} and \mathbf{b}.

As $\mathbf{2}$ is the zero of the polynomial therefore by remainder theorem

$$
\begin{aligned}
& P(2)=0 \\
& 2^{3}+a(2)^{2}+2 b+6=0 \\
& 8+4 a+2 b+6=0 \\
& 4 a+2 b+14=0 \\
& 2 a+b=-7 \quad \rightarrow \text { (1) }
\end{aligned}
$$

Also the polynomial $x^{3}+a x^{2}+b x+6$ when divided by $(x-3)$ leaves a remainder 3
$\therefore P(3)=3$
$3^{3}+a(3)^{2}+3 b+6=3$
$27+9 a+3 b+6=3$
$9 a+3 b+33=3$
$3 a+b=-10 \quad \rightarrow(2)$
Solving (1) and (2), we get

Subtracting equation (2) from (1)

$2 a+b-3 a-b=-7-(-10)$
$-a=3$
$a=-3$
$2 a+b=-7$
$2(-3)+b=-7$
$b=-7+6=-1$
Hence, the value of a and b are -3 and -1 respectively.
8. Factors of $a(x+y+z)+b x+b y+b z$ is/are
(a) $a x+a y+a z$
(b) $b x+b y+b z$
(c) $x+y+z$
(d) $a+b$
$a x+b y+b x+a z+a y+b z$
$=(a x+a y+a z)+(b x+b y+b z)$
$=a(x+y+z)+b(x+y+z)$
$=(x+y+z)(a+b)$
9. If $x+\frac{1}{x}=7$, then which of the following is not the value of $x^{3}+\frac{1}{x^{3}}$ is/are
(a) 318
(b) 325
(c) 343
(d) 322

Given,

$x+1 / x=7$.
Now,
Cubing on both sides,
$(x+1 / x)^{3}=7^{3}$
$x^{3}+1 / x^{3}+3 x(1 / x)(x+1 / x)=343$
$x^{3}+1 / x^{3}=343-3(7)$
$x^{3}+1 / x^{3}=322$
10. If $x-\frac{1}{x}=3$, find the value of $x^{3}-\frac{1}{x^{3}}$
(a) 16
(b) 36
(c) 48
(d) 32
$x-1 / x=3$
On cubing both sides ;
$(x-1 / x)=(3)^{3}$
Using Identity :
$(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
$\Rightarrow x^{3}-1 / x^{3}-3(x-1 / x)=27$
$\Rightarrow x^{3}-1 / x^{3}-3(3)=27$
$\Rightarrow \mathrm{x}^{3}-1 / \mathrm{x}^{3}-9=27$
$\Rightarrow x^{3}-1 / x^{3}=27+9$
$\Rightarrow x^{3}-1 / x^{3}=36$

INTEGER TYPE

The answer to each of the questions is a single-digit integer, ranging from 0 to 9 .
15. The polynomials $k x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+k$ when divided by $(x-4)$ leave the same remainder in each case, then the value of k is
Put $X=4$ in both equation
And both eq would be equal to each other
16. The remainder when $f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}$ is divided by $g(x)=x+\frac{2}{3}$ is

We have,
$f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}$ and $g(x)=x+\frac{2}{3}$

Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-\left(-\frac{2}{3}\right)$, the remainder is equal to $f\left(\frac{-2}{3}\right)$

Now, $f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}$
$f\left(\frac{-2}{3}\right)=3\left(\frac{-2}{3}\right)^{4}+2\left(\frac{-2}{3}\right)^{3}-\left(\frac{\frac{-2}{3} *-\frac{2}{3}}{3}\right)-\frac{-\frac{2}{3}}{9}+\frac{2}{27}$
$=3 * \frac{16}{81}+2 * \frac{-8}{27}-\frac{4}{9 * 3}-\frac{-2}{3 * 9}+\frac{2}{27}$

$$
=\frac{16}{27}-\frac{16}{27}-\frac{4}{27}+\frac{2}{27}+\frac{2}{27}
$$

$$
=\frac{16-16-4+2+2}{27}=\frac{0}{27}
$$

$$
=0
$$

17. If $A=-8 x^{2}-6 x+10$, then its value when ' x ' $=\frac{1}{2}$ is

Put $x=1 / 2$
In given expression to get value of A
18. Degree of the polynomial $\frac{1}{2} x^{5}+3 x^{4}+2 x^{3}+3 x^{2}$ is

Degree is 5
19. If the polynomials $a x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+$ a leave the same remainder when divided by $(x-3)$, then the value of ' $-a$ ' is
$f(x)=a x^{3}+4 x^{2}+3 x-4$
$g(x)=x^{3}-4 x+a$
$f(3)=A(27)+4(9)+3(3)-4$
$27 a+41$
$g(3)=27-4(3)+a$
15+a
$\mathrm{f}(3)=\mathrm{G}(3)$
$27 \mathrm{a}+41=15+\mathrm{a}$
$26 a=15-41$
$a=15-41 / 26$
$a=-26 / 26$
$a=-1$
$-\mathrm{a}=1$

EXERCISE - 2

Level -1

1. Find the value of each of the following polynomials at the indicated values of variables
(i) $2 x^{2}-5 x+3$ at $x=2$
(ii) $p(y)=y^{3}-5 y+5$ at $y=0$
(iii) $\mathrm{p}(\mathrm{z})=3 \mathrm{z}^{2}-\frac{1}{2}+\mathrm{z}$ at $\mathrm{z}=-\frac{1}{2}$.
2. Factorize $\left(x^{2}-4 x\right)\left(x^{2}-4 x-1\right)-20$.
let $x^{2}-4 x=y$
then the question will be
(y) (y-1)-20
$=y^{2}-y-20$
$=y^{2}-5 y+4 y-20$
$=y(y-5)+4(y-5)$
$=(y+4)(y-5)$
by substituting the value of y
$=\left(x^{2}-4 x+4\right)\left(x^{2}-4 x-5\right)$
$=(x-2)^{2}\left(\mathrm{x}^{2}-5 \mathrm{x}+\mathrm{x}-5\right)$
$=(x-2)^{2}(x(x-5)+1(x-5)$
$=(x-2)^{2}(x+1)(x-5)$
3. If the polynomials $a x^{3}+3 x^{2}-13$ and $2 x^{3}-5 x+a$, when divided by $(x-2)$ leave the same remainder, find the value of a.
value of $x=2($ simplifying $x-2)$
so ,
$8 a+12-13=16-10+a($ after putting $x=2)$
$8 a-a=16-10-12+13$
$7 \mathrm{a}=6+1$
$7 \mathrm{a}=7$
$\mathrm{a}=1$
4. Using factor theorem, factorize the polynomial $x^{4}+2 x^{3}-13 x^{2}-14 x+24$.
$\mathrm{x}^{4}-2 \mathrm{x}^{3}-13 \mathrm{x}^{2}+14 \mathrm{x}+24$
$\mathrm{x}^{4}-2 \mathrm{x}^{3}-15 \mathrm{x}^{2}+2 \mathrm{x}^{2}+14 \mathrm{x}+24$
$\mathrm{x}^{2}\left(\mathrm{x}^{2}-2 \mathrm{x}-15\right)+2\left(\mathrm{x}^{2}+7 \mathrm{x}+12\right)$
$\mathrm{x}^{2}(\mathrm{x}-5)(\mathrm{x}+3)+2(\mathrm{x}+4)(\mathrm{x}+3)$
$(\mathrm{x}+3)\left[\mathrm{x}^{2}(\mathrm{x}-5)+2(\mathrm{x}+4)\right]$
$(\mathrm{x}+3)\left[\mathrm{x}^{3}-5 \mathrm{x}^{2}+2 \mathrm{x}+8\right]$
$(\mathrm{x}+3)\left[\mathrm{x}^{3}-4 \mathrm{x}^{2}+4 \mathrm{x}-\mathrm{x}^{2}-2 \mathrm{x}+8\right]$
$(\mathrm{x}+3)\left[\mathrm{x}\left(\mathrm{x}^{2}-4 \mathrm{x}+4\right)-\left(\mathrm{x}^{2}+2 \mathrm{x}-8\right)\right]$
$(\mathrm{x}+3)[\mathrm{x}(\mathrm{x}-2)(\mathrm{x}-2)-(\mathrm{x}+4)(\mathrm{x}-2)]$
$(\mathrm{x}+3)(\mathrm{x}-2)[\mathrm{x}(\mathrm{x}-2)-(\mathrm{x}+4)]$
$(\mathrm{x}+3)(\mathrm{x}-2)\left[\mathrm{x}^{2}-2 \mathrm{x}-\mathrm{x}-4\right]$
$(\mathrm{x}+3)(\mathrm{x}-2)\left[\mathrm{x}^{2}-3 \mathrm{x}-4\right]$
$(\mathrm{x}+3)(\mathrm{x}-2)(\mathrm{x}-4)(\mathrm{x}+1)$
5. Find the remainder when $f(x)=x^{3}-6 x^{2}+2 x-4$ is divided by $g(x)=1-3 x$.
$\mathrm{G}(\mathrm{X})=3 \mathrm{X}-1$
$\Rightarrow 3 X=1$
$\Rightarrow X=1 / 3$
$\mathrm{F}(\mathrm{X})=\mathrm{X}^{3}-6 \mathrm{X}^{2}+2 \mathrm{X}+4$
$F(1 / 3)=(1 / 3)^{3}-6 \times(1 / 3)^{2}+2 \times 1 / 3+4$
$\Rightarrow 1 / 27-6 \times 1 / 9+2 / 3+4$
$\Rightarrow 1 / 27-2 / 3+2 / 3+4$
$\Rightarrow 1-18+18-108 \div 27$
=> -107/27
Hence, remainder $=-107 / 27$
6. Factorize $64 a^{2}+112 a b+49 b^{2}$
$64 a^{2}+49 b^{2}+112 a b$
$=64 a^{2}+112 a b+49 b^{2}$
$=(8 a)^{2}+2 \times 8 a \times 7 b+(7 b)^{2}$
$=(8 a+7 b)^{2}$
$=(8 a+7 b)(8 a+7 b)$
7. Evaluate (999) ${ }^{3}$ by using suitable identities.

Write $(999)=(1000-1)$ and apply identity
8. Find the value of k, if $x+2$ is a factor $x^{2}+k x+6$.

As $x+2$ is a factor so if we put $x=-2$ in expression given we will get value of ' k '
9. Evaluate $\frac{(1.2 \times 1.2 \times 1.2-0.2 \times 0.2 \times 0.2)}{(1.2 \times 1.2+1.2 \times 0.2+0.2 \times 0.2)}$

Apply identity in numerator and denominator
10. The polynomial $p(x)=\mathrm{kx}^{3}+9 \mathrm{x}^{2}+4 \mathrm{x}-8$ when divided by $\mathrm{x}+3$ leaves the remainder 20 , find the value of k .
take $x=-3$ and solve for ' k '
11. (i) If $a=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}, b=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, find $\mathrm{a}^{3}+\mathrm{b}^{3}$
(ii) If $x=3-\sqrt{8}$, find $x^{4}+\frac{1}{x^{4}}$
(iii) If $x=\frac{1}{2-\sqrt{3}}$, prove that $\mathrm{x}^{3}-2 \mathrm{x}^{2}-7 \mathrm{x}+5=3$.
12. If $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=13$ and $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=6$, then evaluate $\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}-3 \mathrm{abc}$.
13. Factorize the following:
(a) $a^{3}+b^{3}+c^{3}-3 a b c$
(b) $(a+b+c)^{3}-\left(a^{3}+b^{3}+c^{3}\right)$.
14. Find the polynomial which when subtracted from

$$
\left(6 x^{4}+3 x^{3}+2 x^{2}+1\right) \text { gives }\left(5 x^{4}+2 x^{3}+x-2\right)
$$

15. By how much does the sum of $2 x^{2}-3 x y+4 y^{2}$ and $5 y^{2}-3 x y-x^{2}$ exceed $5 x^{2}-y^{2}$.
16. Use factor theorem to verify that $(x+a)$ is a factor of $\left(x^{n}+a^{n}\right)$ for any odd positive integer n.

$$
\text { Let } p(x)=x^{n}+a^{n}
$$

The zero of $x+a$ is $-a . \mid x+a=0 \Rightarrow x=-a$
Now,

$$
\begin{aligned}
p(-a) & =(-a)^{n}+a^{n}=(-1)^{n} a^{n}+a^{n} \\
& =(-1) a^{n}+a^{n}
\end{aligned}
$$

$\because \mathrm{n}$ is an odd positive interger
$\therefore(-1)^{n}=-1$
$=-a^{n}+a^{n}=0$
\therefore By Factor Theorem, $\mathrm{x}+\mathrm{a}$ is a factor of $\mathrm{x}^{\mathrm{n}}+\mathrm{a}^{\mathrm{n}}$ for any odd positive integer n .
6. Find the value of N for which $a\left(b^{2}-c^{2}\right)+b\left(c^{2}-a^{2}\right)+c\left(a^{2}-b^{2}\right)=N(b-c)(c-a)$ $(a-b)$ becomes an identity.

$$
\begin{aligned}
& a\left(b^{2}-c^{2}\right)+b\left(c^{2}-a^{2}\right)+c\left(a^{2}-b^{2}\right) \\
& =a b^{2}-a c^{2}+b c^{2}-a^{2} b+c(a-b)(a+b) \\
& =a b^{2}-a^{2} b-a c^{2}+b c^{2}+c(a-b)(a+b) \\
& =-a b(a-b)-c^{2}(a-b)+c(a-b)(a+b) \\
& =(a-b)\left(-a b-c^{2}+c a+b c\right) \\
& =(a-b)\left(-a b+c a-c^{2}+b c\right) \\
& =(a-b)[-a(b-c)+c(b-c)]
\end{aligned}
$$

$=(a-b)[(b-c)(c-a)]$
$=(a-b)(b-c)(c-a)$
Given, $a\left(b^{2}-c^{2}\right)+b\left(c^{2}-a^{2}\right)+c\left(a^{2}-b^{2}\right)=N(a-b)(b-c)(c-a)$
$\therefore(a-b)(b-c)(c-a)=\mathrm{N}(a-b)(b-c)(c-a)$
$\Rightarrow \mathrm{N}=1$
Thus, the value of N is 1 .
7. Factorize $x^{2}-11 x y-x+11 y$.
$x^{2}-11 x y-x+11 y=\left(x^{2}-x\right)+(11 y-11 x y)$ [Regrouping the expressions]
$=x(x-1)+11 y(1-x)$
$=x(x-1)-11 y(x-1)[\because(1-x)=-(x-1)]$
$=(x-11 y)(x-1)$ [Taking out the common factor $(x-1)]$
8. Let R_{1} and R_{2} are the remainders when the polynomials $x^{3}+2 x^{2}-5 a x-7$ and $x^{3}+a x^{2}-12 x+6$ are divided by $x+1$ and $x-2$ respectively. If $2 R_{1}+R_{2}=6$, then find the value of a.
Given the polynomials $P(x)=x^{3}+2 x^{2}-5 a x-7$ and $P^{\prime}(x)=x^{3}+a x^{2}-12 x+6$
when the above polynomials are divided by $\mathrm{x}-1$ and $\mathrm{x}+2$ resp.
then R_{1} and R_{2} are remainders such that
$2 R_{1}+R_{2}=2$

By remainder theorem

$$
\begin{aligned}
& P(1)=x^{3}+2 x^{2}-5 a x-7=1^{3}+2(1)^{2}-5 a(1)-7=1+2-5 a-7=-4-5 a \\
& P^{\prime}(-2)=x^{3}+a x^{2}-12 x+6=(-2)^{3}+a(-2)^{2}-12(-2)+6=-8+4 a+24+6= \\
& 22+4 a
\end{aligned}
$$

As given

$$
\begin{aligned}
& 2 P(1)+P^{\prime}(-2)=2 \\
& 2(-4-5 a)+22+4 a=2 \\
& -8-10 a+22+4 a=2 \\
& 6 a=12 \\
& a=2
\end{aligned}
$$

9. If $a x^{3}+b x^{2}+x-6 h s x+2$ as a factor and leaves a remainder 4 when divided by $x-2$, then find the value of a and b.
Let $p(x)=a x^{3}+b x^{2}+x-6$
A / C to question,
$(\mathrm{x}+2)$ is the factor of $\mathrm{p}(\mathrm{x})$, and we know this is possible only when $\mathrm{p}(-2)=0$
So, $p(2)=a(-2)^{3}+b(-2)^{2}-2-6=0$
$\Rightarrow-8 a+4 b-8=0$
$\Rightarrow 2 a-b+2=0$ \qquad
again, question said that if we $\mathrm{p}(\mathrm{x})$ is divided by $(\mathrm{x}-2)$ then it leaves remainder 4 .
so, $\mathrm{P}(2)=\mathrm{a}(2)^{3}+\mathrm{b}(2)^{2}+2-6=4$
$\Rightarrow 8 \mathrm{a}+4 \mathrm{~b}-4=4$
$2 \mathrm{a}+\mathrm{b}-2=0$
solve equations (1) and (2),
$4 \mathrm{a}=0 \Rightarrow \mathrm{a}=0$ and $\mathrm{b}=2$
10. Factorize $\mathrm{x}^{4}-5 \mathrm{x}^{2}+4$.

$$
\begin{aligned}
x^{4}-5 x^{2}+4 & =\left(x^{2}\right)^{2}-5\left(x^{2}\right)+4 \\
& =\left(x^{2}-4\right)\left(x^{2}-1\right) \\
& =\left(x^{2}-2^{2}\right)\left(x^{2}-1^{2}\right) \\
& =(x-2)(x+2)(x-1)(x+1)
\end{aligned}
$$

11. What must be subtracted from $4 x^{4}-2 x^{3}-6 x^{2}+x-5$ so that the result is exactly divisible by
$2 x^{2}+x-1$
Let's divide $4 \mathrm{x}^{4}-2 \mathrm{x}^{3}-6 \mathrm{x}^{2}+\mathrm{x}-5$ by $2 \mathrm{x}^{2}+\mathrm{x}-1$.
We get; (-6)
Hence, (-6) should be subtracted from $\left(4 x^{4}-2 x^{3}-6 x^{2}+x-5\right)$ so that the resulting polynomial is exactly divisible by $\left(2 x^{2}+x-1\right)$.
12. Factorize $2 x^{4}+x^{3}-14 x^{2}-19 x-6$.

$$
p(x)=2 x^{4}+x^{3}-14 x^{2}-19 x-6
$$

at $x=-1$,
$p(-1)=2-1-14+19-6=21-21=0$
thus $(x+1)$ is a factor of $p(x)$.
now divide $p(x)$ by $(x+1)$:
$x + 1 \longdiv { 2 x ^ { 3 } - x ^ { 2 } - 1 3 x - 6 } \begin{array} { r } { 2 x ^ { 4 } + x ^ { 3 } - 1 4 x ^ { 2 } - 1 9 x - 6 } \end{array}$

$$
\begin{aligned}
& \frac{2 x^{4}+2 x^{3}}{\times-x^{3}-14 x^{2}} \\
& \frac{-x^{3}-x^{2}}{\times-13 x^{2}-19 x} \\
& \frac{-13 x^{2}-13 x}{\times-6 x-6} \\
& \times-6 x-6
\end{aligned}
$$

now let us factorize the polynomial
$q(x)=2 x^{3}-x^{2}-13 x-6$
where
$p(x)=(x+1) q(x)$
now at $x=-2$
$q(-2)=2 *(-8)-4+26-6=26-26=0$
thus $(x+2)$ is a factor of $q(x)$.
now let us divide $q(x)$ by $(x+2)$.
$x + 2 \longdiv { 2 x ^ { 3 } - x ^ { 2 } - 5 x - 3 }$

$\frac{2 x^{3}+4 x^{2}}{\times-5 x^{2}-13 x}$
$-5 x^{2}-10 x$

$\times \quad-3 x-6$
$-3 x-6$
$q(x)=(x+2)\left(2 x^{2}-5 x-3\right)$
$=(x+2)\left[2 x^{2}-6 x+x-3\right]$
$=(x+2)[2 x(x-3)+1(x-3)]$
$=(x+2)(x-3)(2 x+1)$
therefore
$p(x)=(x+1)(x+2)(x-3)(2 x+1)$
13. Find the product of $\left(1+\frac{1}{a}\right),\left(1+\frac{1}{a+1}\right),\left(1+\frac{1}{a+2}\right)$ and $\left(1+\frac{1}{a+3}\right)$.
14. Write down the square of $\mathrm{x}^{2}-2 \mathrm{x}+1$ and find the quotient of $\frac{\left(x^{2}-2 x+1\right)^{2}}{1-3 x+3 x^{2}-x^{3}}$.
15. Simplify the expression $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left(1+x^{16}\right)\left(1+x^{32}\right)\left(1+x^{64}\right)$

$$
\text { Let } \mathrm{x}=\mathrm{q}
$$

Let

$$
P=(1+q)\left(1+q^{2}\right)\left(1+q^{4}\right)\left(1+q^{8}\right)\left(1+q^{16}\right)\left(1+q^{32}\right)\left(1+q^{64}\right) .
$$

One has

$$
(1-q) P=(1-q)(1+q)\left(1+q^{2}\right)\left(1+q^{4}\right)\left(1+q^{8}\right)\left(1+q^{16}\right)\left(1+q^{32}\right)\left(1+q^{64}\right)=1-q^{128} .
$$

So, one gets

$$
P=\frac{1-q^{128}}{1-q}
$$

