
PERMUTATIONS & COMBINATIONS 

Exercise 1 

Q.1 (C, D) 


 

5!
120

5 r !



 

  (5 – r)! = 1 

 r = 5 or 4 

Q.2 (A) 
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Q.3 (D) 


 

 
 k 5 ! k 3 !11

k 1
4! 2 3!

 
   


  

 
k 5 k 4 11

k 1
4 2

 
   

k = 6 or 7. 

Q.4 (D) 

Number of words = 6! = 720 

Q.5 (D) 

Required number of numbers = 4P1 + 4P2 + 4P3 + 4P4 

Q.6 (A) 

 5  Required number of numbers = 5 4 20   

Q.7 (A) 

Total possible ways = 4 3 12   

 

Q.8 (D) 



Number of ways = (2C1)
10 = 1024. 

Q.9 (B) 

Required number of ways = 5P3 = 60. 

Q.10 (C) 

Number of ways = 6! = 720. 

Q.11 (B) 

Number of permutations = 
 4 3 2 ! 9!

2!4!3! 2!4!3!

 
  

Q.12 (B) 

Required number of numbers = 
5!

60
2!
  

Q.13 (A) 

Number of different arrangements = 
6!

2!2!
  

Q.14 (C) 

Number of words = 
11!

2!2!2!
 

Q.15 (A) 

Required number of words = 
8! 5!

16800
3!2! 4!

   

Q.16 (C) 

Number of ways 5 5 5 3

1 1 1C C C 5     

Q.17 (A) 

The number of T digit numbers = 
7!

420
2!3!

  

 

Q.18 (B) 



_ _ _ unit’s digit can be filled in 3 different ways and Ten’s and Hundred’s place each has six 

options. 

Hence, Number of 3 digit odd numbers = 3 6 6 108    

Q.19 (C) 


E E E E

   
 

Odd digits can occupy 2nd. 4th, 6th & 8th places. 

The number of different nine-digit numbers = 
5! 4!

60
2!3! 2!2!

   

Q.20 (C) 

_ _ _ _ _ unit’s place can be filled in 3 different ways. 

Required number of even numbers =  3

1C 4! 72   

Q.21 (B) 
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1st element E1 from domain set ‘A’ has ‘k’ possibilities 

Similarly, each element from domain set ‘A’ has ‘k’ possibilities 

Hence,  n S k k k ...........k times      

kk  

 

Q.22 (A) 



Number of ways = 64 4 4 4 4 4 4       

Q.23 (B) 

Hence, required number = 34. 

Q.24 (A) 

Number of ways = 43 – 1 = 63 

Q.25 (C) 

Number of ways = 54, as each parcel has 5 options. 

Q.26 (A) 

 C Y  

Number of words = 6!. 

Q.27 (B) 

 L  

Required number of ways = 4! 

Q.28 (B) 

Number of arrangement of boys = (7!) 

Number of gaps created = 8. 

Hence, Required number of different ways = 8

37! P . 

Q.29 (C) 

Required number of ways = 6

55! C 5! 5! 6!     

Q.30 (A) 


B B B B B

    
  

Number of arrangement of boys = 5! 

Number of possible permutations of girls = 4P3. 



Hence, Required number of arrangements = 4

35! P 2880   

Q.31 (C) 

Required number of ways is the number of permutations of given 4 grades, taken 3 at a time. i.e., 
4P3. 

Q.32 (B) 

The number of ways in which husbands can be selected = 7C2. 

The number of ways in which wives can be selected after selecting husbands  = 5C2. 

Also, a set of two men and two women can play 2 games. 

Hence, Required number of ways = 7 5

2 2C C 2   = 420. 

Q.33 (A) 

Required number is number of circular permutations such that clockwise and anti-clockwise 

arrangements = 
 5 1 ! 4!

2 2


  

Q.34 (D) 

Required number =  10 1 ! 3! 9! 3!     

Q.35 (B) 

Number of arrangement of men = (7 – 1)! = 6! 

Number of permutations of woman on the gaps created among man = 7! 

Hence, required number = 6! 7!  

Q.36 (A) 

Q.37 (C) 

 47 47 48 49 50 51

4 3 3 3 3 3C C C C C C      52 n n n 1

4 r r 1 rC C C C

     

Q.38 (D) 

n2 – n = 2 + 10 

n = 4 or – 3 



Q.39 (D) 

 20 n

n 2 16C C 20 n 2 & n 16       

n 18 & n 16     

Hence, n = {16, 17, 18}, but 20 n

n 2 16C C   for  n 16,17,18  

Hence, No value. 

Q.40 (A) 

 n n n 1 n 1 n 1

3 4 3 4 3

n 1 n 1
C C C C C 4 3

2 2

    
         

 n 7 n 5    

n > 6 

Q.41 (D) 

Required number of ways = 11C3 = 165. 

Q.42 (D) 

Number of ways of appointing clerks = 20C16 = 4845. 

Q.43 (B) 

Number of ways 11C4 = 330. 

Q.44 (D) 

Required number of words =  5 4

3 2C C 5!   

Q.45 (C) 

Number of ways of selection = 15 10

1 1C C 150   

Q.46 (C) 

 nC2 = 66 

n = 13. 

Q.47 (A) 



Number of ways = 8P5 = 6720. 

Q.48 (B) 

Number of Greeting card exchanged = 20

2C 2  

Q.49 (C) 

The number of times he will go to the garden = 8C3 = 56. 

Q.50 (B) 

The number of ways person can make selection of fruits = (4 + 1) (5 + 1) (6 + 1) – 1 = 209. 

Q.51 (C) 

Number of ways of selection = (10 + 1) (9 + 1) (7 + 1) – 1 = 879. 

Q.52 (B) 

Required number of ways = 26 – 1 = 63. 

Q.53 (D) 

Number of ways in which a student can fail to get all answers correct = 43 – 1 = 63. 

Q.54 (C) 

Total number of different combinations from the letters of word “MISSISSIPPI” 

 M 1,S 4,1 4,P 2    is (1 + 1) (4 + 1) (4 + 1) (2 + 1) – 1 = 149. 

Q.55 (A) 

Total number of ways of selecting six coins = coefficient of x6 in (xo + x1 + ……….. x20) (xo + x1 + 

…….+x10) (xo + x1 + ……x7) 

coefficient of x6 in 
   
   

21 11 8x 1 x 1 x 1

x 1 x 1 x 1

  

  
 

coefficient of x6 in (x21 – 1) (x11 – 1) (x8 – 1) (1 – x) – 3 

6 3 1 8

3 1 2

8 7
C C 28

2

 




     



PERMUTATIONS & COMBINATIONS 

Exercise 2 

Q.1 (C) 

Arrangements of | L |AU|G|H | will be 4! i.e. 24 

Arrangements of |A|U| will be 2! i.e. 2 

Total arrangements = 48. 

Q.2 (B) 

To form natural numbers from 1000 to 9999 having all 4 distinct digits 

9 choices 9 choices 8 choices 7 choices 

Number of such numbers = 9 9 8 7 4536     

Number of all the numbers from 1000 to 9999 = 9000. 

Hence number of natural numbers from 1000 to 9999 not having all 4 distinct digits 

= 9000 – 4536  

= 4464. 

Q.3 (A) 

Two places to put 2s can be chosen in 
7

2C  ways. 

In each of the remaining 5 places we can put 1 or 3 hence these places can be filled in 25 ways. 

Total number of numbers which can formed = 
7 5

2C 2 i.e. 672 . 

Q.4 (C) 

Four consonants may be chosen in 
7

4C  ways. 

Two vowels may be chosen in 
4

2C  ways. 

The selected 6 letters may be arranged in 6! ways. 

Total number of words = 7 4

4 2C C 6! i.e. 151200  . 

Q.5 (D) 

Case I – The required numbers will be of form 57N, where N must be an even number. 

Total number of such numbers = 5. 

Case II – If 5 is not considered, then 

for first digit from left we have 8 choices (not taking 0 & 5), 

for second digit we have 9 choices (not taking 5), 

for last digit we have 5 choices (only even numbers). 

Total number of such numbers = 8 9 5   i.e. 360. 

Hence the number of such numbers = 365. 

Q.6 (D) 



First digit from left may be selected in 3 ways 

last digit may be selected in 2 ways, 

other 4 digits may be selected in 5 4 3 2    ways. 

Total number of numbers = 5 4 3 2 3 2 i.e. 720     . 

Q.7 (A) 

Flag can be designed by having following choices for six strips. 

4 choices 3 choices 3 choices 3 choices 3 choices 3 choices 

Hence number of designs = 12 81 . 

Q.8 (D) 

In {0, 1, 2, 3, 4, 5} sum of all the digits is 15 which is divisible by 3. 

Now we have to choose 5 numbers out of these 6 given numbers such as their sum is also 

divisible by 3. 

Clearly either 0 or three must be discarded. 

In the case when 0 is discarded, using {1, 2, 3, 4, 5} we can form 5! numbers. 

In the case when 3 is discarded, using {0, 1, 2, 4, 5} we can form 4 4!  numbers. 

Total possible numbers are 216. 

Q.9 (C) 

For each digit we have 5 choices  

thus total possible numbers which can be formed are 59. 

Q.10 (D) 

All possible arrangements = 4! 

Arrangements in which ‘ab’ kept together = 3! 2!  

Arrangements in which ‘cd’ kept together = 3! 2!  

Arrangements in which ‘ab’ as well ‘cd’ kept together = 2! 2! 2!   

Arrangements in which neither ‘ab’ nor ‘cd’ are together 

= 4!3! 2! 3! 2!  + 2! 2! 2!   

= 8. 

Q.11 (D) 

To distribute books in given manner we need to select 5 persons and given one book each to 

these 5 persons. 

Number of ways to do so will be 
10

5C 5! . 

 

Q.12 (B) 



To form a rectangle(including squares) we may choose any two vertical lines and any two 

horizontal lines. 

Number of all possible rectangles, r = 9 9

2 2C C = 1296. 

Number of squares of side length 1 = 8 8  

Number of squares of side length 2 = 7 7  

Number of squares of side length 3 = 6 6  

Going by this pattern total number of squares, s = 1 + 4 + 9 + … + 64 = 204.  

Hence 
s 17

r 108
 . 

Q.13 (A) 

Number of ways to select any 3, 4 or all 5 out of first 5 questions and then to select 7, 6 or 5, 

respectively, out of the remaining 8 questions = 5 8 5 8 5 8

3 7 4 6 5 5C C C C C C i.e. 276     . 

Q.14 (B) 

Two consecutive digits we can have in two ways i.e. first two or last two. 

Now if first two digits are identical, then we can chose these in 9 ways (excluding 0)  

and then third digit may be selected in 9 ways (excluding the number already placed in first 2 

places). 

If last two digits are identical, then we can choose first digit in 9 ways (excluding 0)  

and last two digits in 9 ways (excluding the number already placed in first place). 

Hence number of all such numbers is 9 9 9 9 i.e. 162.    

Q.15 (A) 

1, 3 & 5 we can put at 2nd, 4rd& 6th place in 3! ways. 

Now 1st place can be filled by 2 or 4 and 3rd& 5th places can be filled in 2! Ways. 

Hence number of all such numbers is 3! 2 2!   i.e. 24. 

Q.16 (B) 

Keeping those three men as one entity we have 4! arrangements. 

These three men can be arranged in 3! ways within themselves.  

Hence all possible arrangements = 4! 3!  i.e. 144. 

Q.17 (B) 

We have to keep all the consonants together. 

All the consonants as one entity and the 4 vowels may be arranged in 
5!

2!2!
 

Consonants with each other can be arranged in 
5!

2!
 ways. 



Hence all possible arrangements are 
5! 5!

2!2! 2!
  i.e. 1800. 

Q.18 (A) 

For the number to be divisible by four the last two digits must be 12, 16, 32, 36, 52 or 56. 

First two digits can be selected from remaining three numbers in 3 ways. 

Hence number of such numbers = 6 3 2   i.e. 36. 

Q.19 (B) 

As the number has 9 distinct digits hence the middle digit must be 5, digits in last four places 

must be 6,7,8,9 and first four digits must be 1,2,3,4. 

Now for first four place we have 4!ways. 

For the last 4 places we have 4! ways. 

Hence total number of such numbers is  
2

4! . 

Q.20 (B) 

6 digits can be selected in 
9

6C . 

Now as the digits are to be kept in decreasing order so no arrangement required. 

Hence total number of such numbers is 84. 

Q.21 (C) 

Each of the 9 digits can be selected in 9 ways. 

Hence total number of such numbers is 95. 

Q.22 (A) 

Let the sum of any five digits be N. 

Now N can be any number from 1 to 45. 

In each case the remaining digit can be chosen in two particular ways only so as sum of digits is 

divisible by 5. 

{e.g. If N = 42, then remaining digit can be 3 or 8; if N = 23, then remaining digit is 2 or 

7;…etc.} 

Hence total possible number of such numbers is 
49 10 2   i.e. 180000. 

Q.23 (B) 

Each match can result in 3 ways. 

forecast for 5 matches can be made in 35 ways in which one forecast is completely correct. 

Hence there must be at least 243 people. 

Q.24 (A) 

Digits must be selected from {1, 3, 5, 7, 9}. 



As the number must contain each of these so we need to permute 6 objects containing two 

identical objects and rest all distinct which can be done in 
6!

2
 ways. 

Also two identical digits can be selected in 5 ways. 

Hence total number of such numbers is 
6!

5
2

 . 

Q.25 (D) 

If one or more couple is there in the committee, then we can form the committee in the following 

manner 

(i) committee having at least one couple : can be formed by choosing one couple in 4 ways and 

then choosing 2 more people from remaining 6 in 6

2C  ways i.e. 6

24 C or 60 ways . 

(ii) committee having two couples : can be formed by choosing two couples in 
4

2C or 6  ways. 

Hence a committee having one or more couples can be formed in 60 – 6 = 54 ways. 

Number of all possible committee = 
8

4C or 70 ways . 

Thus number of ways to form a committee having no couples = 70 – 54 = 16. 

Q.26 (D) 

Let the numbers to fill be a, b, c, d as shown 

a b 

c d 

Now a + b + c + d = 10 & a + d = b + c = k, then k = 5. 

Now a + d = 5 = b + c gives choices for (a, d) as (1, 4) & (2, 3). 

As a & d are interchangeable hence 4 ways to choose (a, d). 

Similarly there are 4 ways to choose (b, c). 

But as numbers are all distinct therefore for a given selection of (a, d) we can choose (b, c) in 2 

ways only. 

altogether a, b, c, d can be chosen in 4 2 = 8 ways. 

Q.27 (C) 

Sum of internal angles of an n sided polygon = (n – 2)180o. 

Hence 150on = (n – 2)180o gives n = 12. 

Now a diagonal will be formed by joining two of these points but not adjacent two vertices. 

Number of diagonals will be 
12

2C 12  i.e. 54. 

Q.28 (A) 

Number of k digits numbers using just 1 & 2 = 2k. 

Now a number less than 100000000 can be formed in 
8

k

k 1

2 i.e. 510 ways


 . 



A number between 10000000 & 20000000 can be formed in 28  or 256 ways. 

Total possible numbers are 510 + 256 = 766. 

Q. 29 (C) 

Numbers formed using just 1 or 2 are only 2. 

All possible numbers using 1 & 2 only = 2n. 

Hence numbers using at least one 1 & one 2 = 2n – 2.  

Now 2n – 2 = 510 gives n = 9. 

Q.30 (D) 

To form a triangle we need to chose three non – collinear point. 

We can chose 3 points in 
18

3C  ways. 

As each side of the triangle contains 6 points so we can choose all three points on any one side in 
6

33 C  ways. 

Total numbers of triangles = 
18

3C 
6

33 C   i.e. 711. 

Q.31 (A) 

A student can answer 5 questions in two ways, 

(i) one question each from two sections & 3 questions from one section. In this case 

number of ways to chose two sections = 3, 

number of ways to chose one question out of four from any section = 4, 

number of ways to chose three questions out of four from any section = 4. 

Hence number of ways to answer five questions = 
23 4 4 192   . 

(ii) two questions each from two sections and one question from one section. In this case 

number of ways to chose two sections = 3, 

number of ways to chose two question out of four from any section = 6, 

number of ways to chose one questions out of four from any section = 4. 

Hence number of ways to answer five questions = 
23 6 4 432   . 

Total number of ways = 192 + 432 = 624. 

Q.32 (B) 

Any 5 digits from {0, 1, 2,…,9} can be chosen in 
10

5C  ways and put in descending order in just 

one way, hence m = 
10

5C . 

Any 5 digits from {1, 2, 3,…,9} can be chosen in 
9

5C  ways and put in ascending order in just 

one way, hence n = 
9

5C . 

Thus m – n = 
10

5C –  
9

5C  or 
9

4C . 

 

 



Q.33 (A) 

 (i) When A is excluded, to form a triangle we have to choose two points on one line & one point 

on one line number of triangles = m n n m

2 1 2 1C C C C    

(ii) When A is included, other than the triangles formed in case (i) we can form more triangles by 

taking A as one vertex and choosing other two vertices one each on AB & AC. 

Hence number of triangles = m n n m n m

2 1 2 1 1 1C C C C C C      

Ratio of number of triangles in (i) & (ii) = 
m n n m

2 1 2 1

m n n m n m

2 1 2 1 1 1

C C C C m n 2

C C C C C C m n

    


     
. 

Q.34 (A) 

Number of ways to choose 4 prizes out of 9 = 9

4C . 

Rest of the 5 prizes can be distributed to remaining 4 students in 45 ways. 

Total number of ways to distribute 9 prizes among 5 students = 
9 5

4C 4 . 

Q.35 (C) 

Number of ways in which m distinct objects can be permuted at n distinct places = 
m

nP . 

Q.36 (A) 

The required number is maximum possible number of points in which the diagonals of an 

nonagon intersect inside the shape. 

Now Each selection of four of the points gives three pair of lines out which exactly one pair 

intersects in the region enclosed within the four points. 

Hence number of required points is 
9

4C  i.e. 126. 

Q.37 (B) 

For sum of digits to be even : we can choose first four digits in general in 
39 10  ways 

Now if sum of first four digits is even, then last digit must be even  

and if sum of first four digits is odd, then last digit must be odd 

Hence in any possibility last digit can be chosen in 5 ways. 

Number of all such numbers = 
39 10 5   or 45000. 

Q.38 (D) 

Possible way to distribute apples are such that  

(i) one boy gets one apple, one boy gets three and remaining one gets four. 

Hence number of ways to distribute = 8 7

1 3C C 3!  . 

(ii) Two boy gets two apples each, remaining one gets four. 

Hence number of ways to distribute = 
8 6

2 2C C 3!

2!

 
. 



(iii) two boys get three apples each and remaining one gets two. 

Hence number of ways to distribute = 
8 5

3 3C C 3!

2!

 
. 

Total number of ways to distribute apples = 
8 58 6

8 7 3 32 2
1 3

C C 3!C C 3!
C C 3!

2! 2!

  
     

i.e. 4620. 

Now 7

3P 210  gives k = 22. 

Q.39 (D) 

If one or more pair is there in the selection, then we can select shoes in the following manner 

(i) Selection having at least one pair : can be formed by choosing one pair in 5 ways and then 

choosing 2 more shoes from remaining 8 in 
8

2C  ways i.e. 8

25 C or 140 ways . 

(ii) Selection having two pairs : can be formed by choosing two pairs in 
5

2C or 10  ways. 

Hence a selection having one or more pairs can be formed in 140 – 10 = 130 ways. 

Number of all possible selections = 
10

4C or 210 ways . 

Thus number of ways to make a selection having no pairs = 210 – 130 = 80. 

Q.40 (C) 

9 lines will intersect in 9

2C  points. 

9 circles will intersect in 
9

22 C  points. 

9 lines will intersect with 9 circles in 
9 9

1 12 C C   points. 

Total number of points = 270. 

 

 

 

 

 

 

 

 

 

 

 

 



 



PERMUTATIONS & COMBINATIONS 

Exercise 3 

Q.1 (D) 

4a  3a  2a  1a  

 

 

1 1 2 2 3 3 4 1a b 9, a b 9, a b 9 &a b 9        , where 1 2 3 1 2 3 4 4a ,a ,a ,b ,b ,b W & a ,b N  . 

Now number of solutions of each of the first three equations will be 
9 3 1

3 1C or 55 

  and 

those of the fourth equation will be 7 3 1

3 1C or 36 


. 

Hence total number of ways = 
336 55 . 

Q.2 (C) 

Hand shakes by men with each other = 
10

2C  

Hand shakes by women with each other = 
10

2C  

Hand shakes by men with women = 9 5 . 

Total number of hand shakes = 135. 

Q.3 (D) 

Number of ways to choose superintendent = 3 

Number of ways to choose teachers for English school = 6

2C 4!  

Number of ways to choose teachers for Vernacular school = 4! 

Total number of ways = 6

23 C 4! 4!    or 25920. 

Q.4 (A) 

Let A & B be the persons who want to serve together and C & D be those who don’t want to 

serve together. 

Number of committees including A, B & only one of C or D = 
5

22 C  

Number of committees including A & B but none of C & D = 
5

3C  

Number of committees not including A & B and including C or D = 
5

3C  

Number of committees not including any of A, B, C & D = 1. 

Total number of committees = 41. 

 

 

Q.5 (B) 

4b  3b  2b  1b  



Only possible way to distribute in given manner is in groups of 1, 4 & 2. 

Hence number of ways to distribute  = 
7!

3!
1! 2! 4!

  or 630. 

Q.6 (B) 

Trials needed for first four digits = 
4!

2!
. 

Trials needed for fifth digit = 2. 

Trials needed for seventh & eighth digit = 10. 

Total number of trials needed = 
4!

2 10
2!
   = 240. 

Q.7 (C) 

There is only one way to distribute the toys i.e. 3 to youngest one and 2 each to others. 

Number of ways to distribute = 
 

3

9!

2! 3!
. 

Q.8 (A) 

Number of ways to distribute m + n + p objects in three groups containing m, n & p objects is 

given by 
 m n p !

m!n!p!

 
. 

Required number of ways = 
10!

2!3!5!
. 

Q.9 (B) 

We can put 10 red balls at a gap of one each in 10! Ways, then green balls can be put in 11 gaps 

so formed in 
11

9C  ways. 

Hence number of arrangements are 11

9C 10! . 

Q.10 (C) 

Keeping volumes of the same together we have 7 objects to arrange. 

Also keeping volumes of same book in order we can have two arrangements for each seat – 

ascending & descending. 

Number of ways to arrange = 7! 2 2 2   . 

Q.11 (C) 

Number of words starting with E = 
4!

2!
. 



Number of words starting with QE = 
3!

2!
. 

Number of words starting with QUEE = 1. 

Rank of QUEUE = 17. 

Q.12 (A) 

Marbles are to be distributed in 1 : 2 ratio therefore one child will get 4 & other will bet 8 

Required number of ways = 
12!

2!
4!8!

  i.e. 990. 

Q.13 (B) 

Numbers with 1 at first place = 8

4C  or 70. 

Numbers with 23 at first two places = 
6

3C  or 20. 

Numbers with 245 at first three places = 4

2C  or 6. 

As 70 + 20 + 6 = 96, hence 97th number is 24678. 

Q.14 (A) 

Dashes 5 4 3 2 1 0 

Dots 2 3 4 5 6 7 

Arrangements 7

2C  
7

3C  
7

4C  
7

5C  
7

6C  
7

7C  

Total Number of arrangements = 7 7 7

0 12 C C   or 120. 

Q.15 (B) 

Number of ways to arrange n identical red & r identical green balls = 
 n r !

n! r!


 or n r

nC . 

Now range of r is 0 to m. 

Hence number of arrangements = n n 1 n 2 n m n m 1

n n n n n 1C C C ... C C    

     . 

x = n + m + 1 & y = n + 1 or m. 

Q.16 (A) 

D, P, M, L can be arranged in 4! Ways. 

Two pairs of vowels can be chosen in 2 ways i.e. {EE, AA}, {EA, AE} 

Now these pairs can be put in 5 gaps between D, P, M, L in 5

22 C 2!   ways. 

Total number of arrangements = 
5

2C 2 2! 4!    i.e. 960. 

 

 



Q.17 (C) 

Number of arrangements of 8 boys around a circular table = 7!. 

Number of ways to put the two particular boys in 8 gaps = 8

2C 2! . 

Hence all possible arrangements = 8

27! C 2!   i.e. 7 (8!). 

Q.18 (A) 

For India to win 5 matches before Pakistan does, there must be a minimum 5 matches and a 

maximum 9 matches. 

In 5 matches – all must be won by India, hence 1 way. 

In 6 matches – last match and in first 5 matches 4 must be won by India, hence 5

1C  ways. 

In 7 matches – last match and in first 6 matches 4 must be won by India, hence 
6

2C ways. 

In 8 matches – last match and in first 7 matches 4 must be won by India, hence 7

3C  ways. 

In 9 matches – last match and in first 8 matches 4 must be won by India, hence 
8

4C  ways. 

Total number of ways = 1 + 5

1C  + 6

2C + 7

3C + 8

4C  i.e. 126. 

Q.19 (D) 

Put one of the distinct objects at 1 place in the circle. Now for remaining objects we can use 

linear permutations. 

Hence ‘r’ identical & (n – r – 1) distinct objects can be arranged in 
 n 1 !

r!


 ways. 

Q.20 (A) 

Number of ways to chose m objects out of (m + n) objects = 
m n

mC
 

Number of ways to arrange these m and other n on the two tables = 
   m 1 ! n 1 !

2 2

 
 . 

Number of ways of arrangements =
   m n

m

m 1 ! n 1 !
C

2 2


 

   or 
 m n !

4mn


. 

Q.21 (D) 

Number of ways in which delegates of A & B are together = 8! 2!  

Number of ways in which delegates of A & B as well of C & D are together = 7! 2! 2!   

Hence number of ways in which delegates of A & B are together but those of C & D are not 

together = 8! 2! 7! 2! 2!     i.e. 12 7! . 

Q.22 (A) 

Seats for the two specific persons can be chosen in 5 ways on any of the 2 sides between the 

master & mistress i.e. 10 ways. 

Rest of the 10 places can be filled in 10! 2  ways (differentiating between left and right of 



master and mistress). 

Hence total number of ways = 20 10! . 

Q.23 (D) 

Number of ways to select 3 people from n sitting in a row, Pn = n 3 1

3C   

Number of ways to select 3 people from n sitting in a circle, Qn = n 3 1 n 3 1

3 1C C    . 

Hence n 3 1

1C  = 6 or n = 10. 

Alternately 

Number of ways to select 3 people out of n sitting in a circle = 
 
n C

3
 

Number of ways to select two adjacent and one separated = n 4

1n C  

Number of ways to select all three adjacent = n. 

Hence number of ways to select 3 people out of n sitting in a circle such that no two are adjacent 

Qn = n n 4

3 1C n C n   . 

n 2 n n 4

n n 3 3 1P Q C C n C n

n 4 6 i.e. n 10.

      

   
 

Q.24 (C) 

     p q ! p q ! p q !
L ,M 2! & N

p!q! p!q! p!q!

  
    . 

Q.25 (C) 

For ‘m’ choose 4 persons out of 10 and permute 4 books with 4 persons in 
10

4C 4!  ways. 

For ‘n’ choose 4 persons out of 10 (no need to permute) in 
10

4C  ways. 

Q.26 (B) 

Put ladies in (n – 1)! Ways. 

Now put gentlemen in (n – 1) gaps between ladies in n! ways. 

Total number of ways =  n 1 ! n!  . 

Q.27 (A) 

Number of ways to distribute ‘n’ identical objects in ‘r’ distinct groups such that no group is 

empty = 
n 1

r 1C

 . 

Hence required number of ways = 
10 1

6 1C

  i.e. 126. 

Q.28 (C) 

For each question we can have 3 choices namely (i) not selecting, (ii) selecting alternative 1 & 

(ii) selecting alternative 2. 



Hence choices for 10 questions = 310. 

But all the question cant be rejected hence required number of ways = 310 – 1. 

Q.29 (D) 

Let us put A at P1. 

If B is on right of A i.e. at P2, then place on right of B i.e. at P3 can be 

filled by C or D in 2 ways and remaining 3 places can be filled in 3! 

Ways. Hence this arrangements can be made in 12 ways. 

If C is on right of A i.e. P2, then we can make B & D sit {P3, P4}, {P4, 

P5} or {P5, P6} and the rest of the two places can be filled in 2 ways. 

Hence this arrangements can be made in 6 ways. 

Total number of arrangements = 18. 

Q.30 (C) 

Let Miss C & Mr. B be included, then Mr. A cant be selected hence 1 more woman to be 

selected from 4 remaining and 2 more men to be selected from remaining 4. 

Number of combinations = 4 4

1 2C C  i.e. 24. 

If Mr. A is included then Mr. B cant be selected hence 2 women to be selected from 5 choices 

and 2 more men to be selected from remaining 4. 

Number of combinations = 5 4

2 2C C  i.e. 60. 

In none of A & B are included, then 2 women to be selected from 5 choices and 3 men to be 

selected from remaining 4. 

Number of combinations = 5 4

2 3C C  i.e. 40. 

Total possible combinations = 124. 

Q.31 (A) 

Number of ways to arrange balls keeping balls of same color together 3! 4!  i.e. 6 4! . 

Number of all possible arrangements = 
9!

2!3!
 i.e. 6 7! . 

Number of arrangements in which at least one ball of same color is separated from others of 

same color =  6 7! 4! . 

Q.32 (B) 

Trials needed for first three digits = 2. 

If Last digit is 9, then rest three digits can be tried in 93 ways. 

If last digit is one of 1, 3, 5 or 7, then one of the remaining three is 9(chosen in 3 ways) and other 

two digits can be chosen in 92 ways, hence all possible ways are 
24 3 9   ways. 

Total number of ways to try the number =  3 22 9 4 3 9     or 3402. 

 



Q.33 (B) 

 

We can place AB, E & F in 3! 2!  i.e. 12 ways. 

Now C & D can be placed in gaps in 4

2C 2!  i.e. 12 ways.  

Total number of arrangements = 144. 

Q.34 (C) 

Let ‘r’ boxes be filled by red balls and rest ‘5 – r’ with blue balls. 

Blue balls must be put in r + 1 gaps between red balls. 

Hence number of ways to put green balls = 
r 1

5 rC

 . 

Also r 1 5 r 2 r 5      . 

Number of all possible arrangements = 
5

r 1 3 4 5 6

5 r 3 2 1 0

r 2

C C C C C





     i.e. 13. 

Q.35 (C) 

Standard results. 

Q.36 (B) 

Using 6 points which are not cyclic we can draw 
6

3C  circles. 

Using 2 of the 5 cyclic points and 1 of the 6 noncyclic points we can draw 
5 6

2 1C C  circles. 

Using 1 of the 5 cyclic points and 2 of the 6 noncyclic points we can draw 
5 6

1 2C C  circles. 

Using the 5 cyclic points only 1 circle can be drawn. 

Total number of circles = 6 5 6 5 6

3 2 1 1 2C C C C C 1      i.e. 156. 

Alternately 

Using 11 points we can draw 
11

3C  circles, but 5 out of these are cyclic so 
5

3C  circles will 

coincide into 1. 

Total number of circles = 11 5

3 3C C 1  . 

Q.37 (C) 

Number of ways to divide ‘nr’ distinct objects into r groups containing equal number of objects 

= 
 

 
r

nr !

r! n!
. 

Hence 52 cards can be distributed into 4 groups of 13 cards each = 
 

 
4

52 !

4! 13!
. 

 

 

- AB - E - F - 



Q.38 (A) 

Number of non negative integral solutions of 3x + y + z = 24 is equal to number of no negative 

integral solutions of y + z = 24 – 3r, where r = 0, 1,…,8. 

i.e. 
   

8 8
24 3r 2 1

2 1

r 0 r 0

C or 25 3r
  



 

  . 

Hence required number of solutions are 225 – 3(1 + 2 +…+ 8) i.e. 117. 

Q.39 (C) 

A & B can be seated in 1 way on two identical tables. 

Rest of the 6 persons can be seated in 6! Ways. 

Hence total ways to seat 8 persons = 720. 

Q.40 (D) 

As        
3 3 3 33 3 3 33 4 5 6 , hence for every n N, 3n 4n 5n 6n       . 

There are infinitely many such numbers. 

Q.41 (D) 

Number of zeros at the end of 50! = exponent of 5 in 50! 

i.e. 
50 50

or 12
5 25

   
   

   
, where [x] denotes greatest integer less than or equal to x. 

Q.42 (B) 

Let the subset A contain r elements, then subset B must contain remaining n – r elements so as 

A B & A B S   . 

Hence number of ordered pairs (A, B) = 
10

10 10

r

r 0

C i.e. 2


  

Total number of unordered pairs of subsets of S = 
10

92
i.e. 2

2
. 

Q.43 (A) 

To form a number of r digits , where 1 r 9  , we have to chose r digits from {1, 2,…,9} in 
9

rC  

number of ways and arrange them in ascending order which can be done in just 1 way. 

Number of numbers of r digits = 
9

rC . 

Hence number of all such numbers = 
9

9 9

r

r 1

C 2 1


  . 

 

 



 

Q.44 (C) 

Odd digits – 3,3,5,5. 

Even places 2nd, 4th, 6th & 8th. 

Number of arrangements of odd digits at even places = 
4!

2! 2!
. 

Number of arrangements of remaining digits at rest of the places = 
5!

2! 3!
. 

Number of all such numbers = 
4! 5!

2! 2! 2! 3!


 
 i.e. 60. 

Q.45 (D) 

Place for A can be selected in 2 3  ways (leaving corner seats on both the sides) and then place 

for B can be selected in 6 ways(leaving places adjacent to A and opposite to A). 

Place for A can be selected in 4 ways(seats at corners) and then for place for B in 7 ways 

(leaving place adjacent to A and opposite to A). 

All the other people can sit in 8! Ways. 

Hence number of seating arrangements = ( 2 3 6   + 4 7 ) 8!  i.e. 64 8! . 

Q.46 (A) 

mn = 25! Gives mn = 
20 10 6 3 22 3 5 7 11 13 17 19 23        . 

Hence mn as 9 prime factors. 

For gcd(m, n) = 1, we need to chose m and n from these only. 

Number of ways to chose m & n = 
9

9

r

r 0

C


  or 29. 

Now number of selection such that 
m

1
n
  = Now number of selection such that 

m
1

n
 . 

Hence number of ways to select m, n such that 
m

1
n
  = 

9
82

i.e. 2
2

. 

Q.47 (D) 

Given    x 1 divides P x hence P 1 0    i.e. a c 2b  . 

Now if we chose any two odd numbers or any two even numbers from the set of given numbers 

as ‘a’ & ‘b’, then c gets selected automatically. 

Required number of selections =  7 7

2 2C C 2  . 

Q.48 (B) 



Number of positive integers of r–digits not having any digit as 1 = 
r 18 9  . 

Number of all the positive integers of r–digits = 
r 19 10  . 

Number of numbers having at least one digit as 1 = 
r 1 r 19 10 8 9    . 

Hence number of all the numbers up to 9-digit numbers =  
9

r 1 r 1 9 9

r 1

9 10 8 9 i.e. 10 9 



    . 

Alternately 

If we form a 9 digit number allowing consecutive 0s at places form beginning also, then r 

consecutive zeros from beginning will account for a number of (9 – r) digits. 

Hence all numbers from 1 digit till 9 digit = 109. 

Hence all numbers from 1 digit till 9 digit not including 1 = 99. 

Number of numbers having at least one digit as 1 =109 – 99. 

Q.49 (B) 

A white square can be selected in 32 ways. 

Leaving the 8 black squares in the row and column containing the previously selected white 

square, we are left with 24 black squares. 

Number of ways to selected a white and a black square = 32 24 . 

Q.50 (B) 

Red cards can be arranged with each other in 26! Ways. 

Black cards can be arranged with each other in 26! Ways. 

Ordering of red & black cards can be done in 2 ways. 

Number of arrangements = (26!)2  2. 

Q.51 (A) 

13 13 14 13 13 14

3 4 4 4 5 5

13 13 13 14 14

3 4 5 4 5

n 15

r 5

C C C & C C C

C 2 C C C C

C C

Hence r 5 or 10.

   

    

 



 

Q.52 (C) 

Number of outcomes on each die = 6. 

Hence all the four dice will show same number I 6 ways. 

Q.53 (B) 

A & B along with any other two persons can sit on the straight table in 6

2C 4!  ways. 

Remaining four persons can sit around the circular table in 3! Ways. 

Total number of arrangements = 6

2C 4! 3!   i.e. 2160. 



Q.54 (C) 

Each suit can be arranged in 13! Ways and the suits can be arranged with each other in 4! Ways. 

Hence total number of arrangements = (13!)44!. 

Q.55 (D) 

To form a mixed doubles team we need to select 2 males and two females which can be done in 
8 8

2 2C C  ways and then the selected 4 players can be arranged in 2 ways. 

Hence total number of ways = 8 8

2 22 C C   i.e. 1568. 

Q.56 (D) 

Number of pairings = number of ways to distribute 8 distinct objects in 4 groups each containing 

2 objects i.e. 
8! 8.7.6.5

105
2!2!2!2!4! 16

  . 

Q.57 (C) 

Let n parabola divide a plane in Tn regions. 

1 parabola divides the plane in 2 regions. 

If a second parabola is introduced, then 3 parts will increase. 

If a third parabola is introduced, then 5 parts will increase. 

If a fourth parabola is introduced, then 7 parts will increase. 

Now if (n – 1) parabolas are already there and nth parabola is introduced (2n  1) new regions 

will be created, hence 

n n 1T T 2n 1    

Also T1 = 2. 

Therefore 10 1T T 3 5 ... 19 101      . 

Q.58 (A) 

There are m number of ways to distribute each object and k objects are there so required number 

of ways = mk. 

Q.59 (D) 

The word EQUATIONS contains {A, E, I, O, U} which are to be kept in the same order and  

{Q, T, N, S} which can be kept in any order. 

Total number of arrangements are 9! But as vowels can’t be arranged with each other hence 

required number of arrangements = 
9!

5!
. 

Q.60 (A) 

As targets in same column can be shot only in a certain order hence number of ways to shoot will  



be 
8!

3!2!3!
 i.e. 560. 

Q.61 (D) 

We have to find umber of positive integral solutions of 3x + 5y = 283. 

For 
283 3x

y
5


 , (283 – 3x) must be a multiple of 5, hence last digit of 3x must be 3 or 8. 

Now multiples of 3 having last digit 3 and less than 283 are {3, 33, 63, 93,…,273} i.e. 10 

and multiples of 3 having last digit 8 and less than 283 are {18, 48, 78, 93,…,258} i.e. 9 

Hence total 19 such points are there. 

Q.62 (A) 

There are two common elements in A & B. 

If A has n elements and B has m elements, then m n 21  . 

Hence {m, n} = {3, 7} or {7, 3} . 

A possible arrangement is as shown in adjoining figure. 

Hence    A B' A' B    = 6. 

 

 

Q.63 (B) 

To place two rooks in attacking position they must be placed  

in the same row or column as shown in the adjoining figure.  

As there are eight rows/columns and eight rooks hence each 

row/column must have exactly one rook. 

So eight rooks can be placed in 8! Ways. 

 

 

Q.64 (C) 

n circles will intersect in n

22 C  ways. 

n lines will intersect in 
n

2C  ways. 

n lines will intersect n circles in 
n n

1 12 C C   ways. 

Hence n n n n

2 2 1 12 C C 2 C C 80       which gives n = 5. 

Q.65 (B) 

Let there be x number of 2s, y number of 5s and z number of 7s are used in forming an n digit 

number, then the total number of numbers formed will be 



n n n

x 0 y 0 z 0

n!
900, where x y z n

x!y!z!  

    . 

 
n

sum of coefficients in expansion of x y z 900     

n3 900  . 

Now 36 = 729, hence least value of n = 7. 

Q.66 (C) 

12 dice can show any outcome in 12! Ways if all the outcomes could be distinct. Now as there 

are 2 each 1, 2, 3, 4, 5, 6 hence required number of ways = 
 

6

12!

2!
. 

Q.67 (C) 

If there are n number of B used, then required number of numbers will be 
 a n !

a!n!


. 

Hence total possible number of numbers where 0 n b  will be 
 b b

a n

n

n 0 n 0

a n !
C

a!n!



 


   

i.e. a b 1

bC  .  

Q.68 (D) 

Given A = {1, 11, 21, …, 551} 

There are 28 pairs whose sum is 552 such as (1, 551), (2, 550),…, (271, 281) 

So if one number of a pair is taken in B then the other number can’t be in B. 

Hence B can contain maximum 28 elements. 

Q.69 (A) 

AAAAA, BBB, D, EE & F can be arranged in 
12!

5! 3! 2!
 ways. 

Now there will be 13 gaps where we can put 3 C in 
13

3C  ways. 

Hence total number of arrangements = 
13

3

12!
C

5! 3! 2!
 . 

Q.70 (C) 

EARTHQUAKE – {E,E}, {A,A}, {R, T, H, Q, U, K} 

A 4 letter permutation can be of 

(i) 2 alike & 2 alike = 
4!

i.e. 6 ways
2! 2!

 

(ii) 2 alike & two distinct = 
7

2

4!
2 C i.e. 504 ways

2!
   



(iii) all four distinct = 8

4C 4! i.e. 1680 ways  

Hence total number of permutations = 6 + 504 + 1680 = 2190. 
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