MUMBAI/DELHI-NCR/PUNE/NASHIK/AKOLA/GOA / JALGOAN / BOKARO / AMRAVATI / DHULE

SOLUTIONS

1. (C)

Specific heat of ice is $2.1 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Total heat released by water is $10 \times 4.2 \times 50=2100 \mathrm{~J}$. Total heat absorbed by ice from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}=10 \times 2.1 \times 20=420 \mathrm{~J}$
$\Delta \theta=2100-420=\mathrm{mL}$ melted ice, $\mathrm{m}=(2100-420) / 336 \approx 5 \mathrm{gm}$. Hence, at equilibrium, total water is 15 gm , total ice is 5 gm .
2. (B)

At temperature t the heat energy required to raise temperature of unit mass by dt is $\mathrm{dq}=\mathrm{at}^{3} \times 1 \times \mathrm{dt}$
So heat required to raise temperature from 1 K to 2 K is
$\int_{0}^{\mathrm{Q}} \mathrm{dq}=\int_{1}^{2} \mathrm{at}^{3} \mathrm{dt} \Rightarrow \mathrm{Q}=\left.\mathrm{a} \frac{\mathrm{t}^{4}}{4}\right|_{1} ^{2}=\mathrm{a}(16-1)$
$\Rightarrow \mathrm{Q}=15 \mathrm{a} / 4$
3. (C)

Since specific heat of lead is given in Joules, hence use $\mathrm{W}=\mathrm{Q}$ instead of $\mathrm{W}=\mathrm{JQ}$.
So, $\frac{1}{2} \times\left(\frac{1}{2} m v^{2}\right)=m . c . \Delta \theta \Rightarrow \Delta \theta=\frac{v^{2}}{4 c}=\frac{(300)^{2}}{4 \times 150}=150^{\circ} \mathrm{C}$
4. (D)
$\gamma_{\mathrm{ac}}=\gamma_{l}-\gamma_{\mathrm{c}}$
$\therefore \mathrm{C}=\gamma_{l}-\gamma_{\mathrm{c}}$
$\gamma_{\mathrm{as}}=\gamma_{l}-\gamma_{\mathrm{s}}$
$\therefore \mathrm{S}=\gamma_{l}-\gamma_{\mathrm{s}}$
From (1) and (2)
$\mathrm{S}+\gamma_{\mathrm{s}}=\mathrm{C}+\gamma_{\mathrm{c}}$
$\gamma_{\mathrm{s}}=\mathrm{C}-\mathrm{S}+\gamma_{\mathrm{c}}$
$3 \alpha_{\mathrm{s}}=\mathrm{C}-\mathrm{S}+\gamma_{\mathrm{c}}$
$\Rightarrow \alpha_{\mathrm{s}}=\frac{\mathrm{C}-\mathrm{S}+\gamma_{\mathrm{c}}}{3}$
5. (D)
$\because \quad \mathrm{dl}=\alpha \mathrm{l}_{0} \mathrm{dT}$

$$
\begin{array}{ll}
\therefore \quad & \Delta \mathrm{l}=\int \mathrm{dl}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}}\left(\mathrm{aT}-\mathrm{bT}^{2}\right) \mathrm{l}_{0} \mathrm{dT} \\
& =\mathrm{l}_{0}\left[\frac{\mathrm{a}}{2}\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)-\frac{\mathrm{b}}{3}\left(\mathrm{~T}_{2}^{3}-\mathrm{T}_{1}^{3}\right)\right] \\
& =1_{0}\left[\frac{3}{2} \mathrm{aT}_{1}^{2}-\frac{7 \mathrm{~b}}{3} \mathrm{~T}_{1}^{3}\right]
\end{array}
$$

6. (B)

We just need to insulate the system, and balance the heat. So this experiment is not dependent on time taken to reach equilibrium. If system is insulated then, heat lost by copper $=$ heat gain by beaker and water.
7. $(\mathrm{A}, \mathrm{C}, \mathrm{D})$
$\frac{\Delta \mathrm{A}}{\mathrm{A}} \times 100=2\left(\frac{\Delta \mathrm{l}}{\mathrm{l}}\right) \times 100$
$\%$ increase in area $=2 \times 0.2=0.4 \%$
$\frac{\Delta \mathrm{V}}{\mathrm{V}} \times 100=3 \times 0.2=0.6 \%$
Since
$\Delta \mathrm{l}=\mathrm{l} \alpha \Delta \mathrm{T}$
$\frac{\Delta \mathrm{l}}{\mathrm{l}} \times 100=\alpha \Delta \mathrm{T} \times 100=0.2$
$\alpha=0.25 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
8. (B, C)
$\mathrm{T}=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}=2 \pi \sqrt{\frac{l_{0}+\alpha l_{0} \Delta \theta_{0}}{\mathrm{~g}}}$
$=\mathrm{T}_{0}\left(1+\frac{1}{2} \alpha \Delta \theta\right)$
At $30^{\circ} \mathrm{C}$, fraction loss of time $=\frac{\mathrm{T}_{30^{\circ}}-\mathrm{T}_{20^{\circ}}}{\mathrm{T}_{20^{\circ}}}$
$=5 \alpha=5 \times 19 \times 10^{-6}$
Time lost in $24 \mathrm{~h}=86400 \times 95 \times 10^{-6}=8.2 \mathrm{~s}$
On a cold day at $10^{\circ} \mathrm{C}$, fraction gain of time
$=\frac{\mathrm{T}_{10^{\circ}}-\mathrm{T}_{20^{\circ}}}{\mathrm{T}_{20^{\circ}}}=-5 \alpha$
Time gains in $24 \mathrm{~h}=8.2 \mathrm{~s}$
9. (B, D)
$R=\frac{t}{\left(\alpha_{B}-\alpha_{C}\right) \Delta T}$
10. (Bonus)

$$
\mathrm{dQ}=\mathrm{mCdT}
$$

or $\mathrm{Hdt}=\mathrm{mCdT}$
$\therefore \quad \mathrm{C}=\left(\frac{\mathrm{H}}{\mathrm{m}}\right) \frac{1}{(\mathrm{dT} / \mathrm{dt})}$

As $\frac{\mathrm{dT}}{\mathrm{dt}}$ of CD is smaller, so $\mathrm{C}_{\text {liquid }}>\mathrm{C}_{\text {solid }}$
$\mathrm{Q}_{1}=\mathrm{H}\left(\Delta \mathrm{t}_{1}\right)$ and $\mathrm{Q}_{2}=\mathrm{H}\left(\Delta \mathrm{t}_{2}\right)$
AS $\Delta \mathrm{t}_{2}>\Delta \mathrm{t}_{1}, \therefore \mathrm{Q}_{2}>\mathrm{Q}_{1}$
11. (B)

All parallel faces will expand by same amount. Therefore, there will not be any distortion in shape. $\beta_{\text {BCGH }}=\alpha_{y}+\alpha_{z}=5 \times 10^{-5} /{ }^{\circ} \mathrm{C}$ [Refer to example 9]
Similarly, $\gamma=\alpha_{x}+\alpha_{y}+\alpha_{z}=6 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
12. (A, B)

Let M and m be masses of water and ice, initially at temperature of $40^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$, respectively. To attain a temperature of $0^{\circ} \mathrm{C}$, the heat lost by the water would be 4 units.
$(M g)\left(1 \mathrm{cal} / \mathrm{g}^{-}{ }^{\circ} \mathrm{C}\right)\left(40-0^{\circ} \mathrm{C}\right)=4$ units
or $\quad M \mathrm{cal}=\frac{1}{10}$ units
Similarly, to attain a temperature of $0^{\circ} \mathrm{C}$, the heat gained by ice would be 1 unit.

$$
\begin{equation*}
(\mathrm{mg})\left(\frac{1}{2} \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(0+40^{\circ} \mathrm{C}\right)=1 \text { unit } \tag{ii}
\end{equation*}
$$

or $m \mathrm{cal}=\frac{1}{20}$ unit
From (i) and (ii), $\frac{M}{m}=2$
Heat required for the complete ice to melt at $0^{\circ} \mathrm{C}$ will be $(\mathrm{mg})(80 \mathrm{cal} / \mathrm{g})=80 \mathrm{~m} \mathrm{cal}=4$ unit.
By the time the temperature of the entire water had dropped to $0^{\circ} \mathrm{C}$, the amount of heat ejected would be 4 unit, out of which 1 unit would be consumed by the ice to get heated up from $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ and the remaining heat of 3 units, would be consumed to melt.
Since of total mass of ice require a heat of 4 unit to melt completely, a heat of 3 units will be able to melt only (3/4)th of the ice.
13. (A, D)
$\Delta V_{L}=\Delta V_{V}$
$\gamma_{L} V_{L}=\gamma_{V} V_{V}$ or $\frac{\gamma_{L}}{\gamma_{V}}=\frac{V_{V}}{V_{L}}$
$V_{V}>V_{L} \Rightarrow \gamma_{L}>\gamma_{V}$
14. (A, B)

When the steam at $100^{\circ} \mathrm{C}$ transforms into water at $100^{\circ} \mathrm{C}$, it releases heat given by $\mathrm{Q}_{1}=100 \times 540=54000 \mathrm{cal}$
200 g ice, for melting at $0^{\circ} \mathrm{C}$ needs an amount of heat given by
$\mathrm{Q}_{2}=200 \times 80=16000 \mathrm{cal}$.
Water formed at $0^{\circ} \mathrm{C}$, if heated to 100°, will need a heat given by
$\mathrm{Q}_{3}=200 \times 1 \times 100=20000 \mathrm{cal}$
200 g water at $55^{\circ} \mathrm{C}$, if heated to $100^{\circ} \mathrm{C}$, will need a heat given by
$\mathrm{Q}_{4}=200 \times 1 \times 45=9000 \mathrm{cal}$
$\left(\mathrm{Q}_{2}+\mathrm{Q}_{3}+\mathrm{Q}_{4}\right)<\mathrm{Q}_{1}$
This implies that the entire steam will not condense, and the mixture will attain a temperature of $100^{\circ} \mathrm{C}$.
Let mass of steam condensed by m
$\mathrm{mL}_{\mathrm{v}}=\mathrm{Q}_{2}+\mathrm{Q}_{3}+\mathrm{Q}_{4}$
$\mathrm{m} \times 540=45000 \Rightarrow \mathrm{~m}=83.3 \mathrm{~g}$
\therefore Mass of water in the final mixture $=200+200+83.3$

$$
=483.3 \mathrm{~g}
$$

15. (C, D)

Thermal expansion is like photographic enlargement.
16. (8)

$$
W_{0}=m g=46 g w t, \theta_{1}=27^{\circ} \mathrm{C}
$$

$W_{1}=30 g=W_{0}-B_{1}$
$\Rightarrow B_{1}=(46-30) g$
$\Rightarrow B_{1}=16 \mathrm{~g}-\mathrm{wt}=V_{1} \rho_{1} g$
$\theta_{2}=42^{\circ} \mathrm{C}$
$W_{2}=30.5 \mathrm{~g}=W_{0}-B_{2}$
$\Rightarrow \quad B_{2}=15.5 g=V_{2} \rho_{2} g$
$\therefore \quad \frac{B_{2}}{B_{1}}=\frac{V_{2} \rho_{2}}{V_{1} \rho_{1}}$
$\frac{15.5}{16}=\left(1+3 \alpha_{s} \times 15\right) \times \frac{1.2}{1.24}$
$\alpha_{S}=\left[\left(\frac{15.5}{16} \times \frac{1.24}{1.2}\right)-1\right] \times \frac{1}{45}$
$\alpha_{s}=2.31 \times 10^{-5} /{ }^{\circ} \mathrm{C}=\frac{1}{43200} /{ }^{\circ} \mathrm{C}$
17. (12)

Heat released by steam = heat absorbed by water
$m_{1} L+m_{1} \times S(100-90)=m_{2} \times S(90-24)$
$540 m_{1}+10 m_{1}=66 m_{2}$
$\Rightarrow m_{1}=\frac{66 \times 100}{550}=12 \mathrm{~g}$
18. (15)
$V_{\mathrm{C}}-V_{\mathrm{Hg}}=V_{C}^{\prime}=V_{H g}^{\prime}=$ Volume of air
$\Rightarrow V_{C}^{\prime}=V_{C}\left(1+3 \alpha_{s} \Delta \theta\right)$
$V_{H g}^{\prime}=V_{H g}\left(1+\gamma_{L} \Delta \theta\right)$
So, $V_{C} \times 3 \alpha_{S}=V_{H g} \times \gamma_{L}$
$V_{H g}=\frac{1 \times 3 \times 9 \times 10^{-6}}{1.8 \times 10^{-4}}=0.15 \mathrm{~L}$
19. (0)
(Final mixture is 125 g ice and 275 g water at $0^{\circ} \mathrm{C}$.)
Say final mixture is 400 g water at $0^{\circ} \mathrm{C}$.
$Q_{2}=(200)(1)(50)=10,000 \mathrm{cal}$
$Q_{1}=(200)(0.5)(40)+(200)(80)$
$=20,000 \mathrm{cal}$
$Q=Q_{2}-Q_{1}=10,000-20,000$
$=-10,000 \mathrm{cal}$
Since, $\mathrm{Q}<0$
$\therefore|Q|=m L_{F}$
$10,000=m \times 80$
$m=125 \mathrm{~g}$
So final mixture is 125 g ice and 275 g water at $0^{\circ} \mathrm{C}$.
20. (90)

Rate of cooling during solid phase: $\mathrm{d} \theta$, with $\mathrm{d} \theta / \mathrm{dt}$ where s is the specific heat, m is the mass of the substance and $d \theta$ is the temp difference. Rate of cooling during phase change: $\frac{\mathrm{mL}}{30}$ where L is the latent heat of fusion.
Given the rate of cooling is same for both
$\therefore \mathrm{d} \theta$, with $\mathrm{d} \theta / \mathrm{dt}$
$\therefore \frac{\mathrm{s}}{\mathrm{L}}=\frac{1}{3 \times 30}=\frac{1}{90} \mathrm{~K}^{-1}$

MUMBAI/DELHI-NCR/PUNE / NASHIK/AKOLA/GOA / JALGOAN / BOKARO / AMRAVATI / DHULE

SOLUTIONS

21. (D)

$$
\begin{aligned}
& \mathrm{pOH}_{1}=\mathrm{pK}_{\mathrm{b}}+\log \left(\frac{0.1}{0.1}\right) ;\left(\mathrm{K}_{\mathrm{b}}=2 \times 10^{-5}\right) \\
& \mathrm{pOH}_{2}=\mathrm{pK}_{\mathrm{b}}+\log \left(\frac{9+1}{9-1}\right) \\
& \begin{aligned}
\mathrm{pH} & =\log \left(\frac{10}{8}\right)
\end{aligned} \\
& \% \text { change }=\frac{\Delta \mathrm{pH}}{14-\left[\mathrm{pK}_{\mathrm{b}}\right]} \times 100 \\
& \quad=\frac{\log 10-3 \log 2}{9.3}=\frac{10}{9.3} \% \downarrow
\end{aligned}
$$

22. (A)
23. (A)
24. (D)
25. (D)
26. (ABC)
27. (AD)
28. (ABC)
29. (AD)
$\left[\mathrm{H}^{+}\right]_{\mathrm{H}_{2} \mathrm{O}}$ is considered for very dilute solutions.
30. (ABCD)

$$
\begin{aligned}
& {\left[\mathrm{A}_{2} \mathrm{H}_{4}\right]_{0}=\left[\mathrm{A}_{2} \mathrm{H}_{4}\right]+\left[\mathrm{A}_{2} \mathrm{H}_{5}^{+}\right]+\left[\mathrm{A}_{2} \mathrm{H}_{6}^{2+}\right]} \\
& \mathrm{K}_{\mathrm{b}_{1}}=\frac{\left[\mathrm{A}_{2} \mathrm{H}_{5}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}_{2} \mathrm{H}_{4}\right]}
\end{aligned}
$$

$\left[\mathrm{A}_{2} \mathrm{H}_{5}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{4 \times 10^{-5} \times 0.1}=2 \times 10^{-3} \mathrm{M}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=5 \times 10^{-12} \mathrm{M}$
$\mathrm{K}_{\mathrm{b}_{1}} \times \mathrm{K}_{\mathrm{b}_{2}}=\frac{\left[\mathrm{A}_{2} \mathrm{H}_{6}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}}{\left[\mathrm{~A}_{2} \mathrm{H}_{4}\right]}$
$\Rightarrow\left[\mathrm{A}_{2} \mathrm{H}_{6}^{2+}\right]=\frac{4 \times 10^{-5} \times 10^{-8} \times 0.1}{\left(2 \times 10^{-3}\right)^{2}}=10^{-8} \mathrm{M}$
31. (AC)
32. (AB)
33. (BC)
34. (ACD)

$$
\begin{aligned}
& \underset{1-\alpha}{\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}_{\alpha}^{+}+\mathrm{H}_{2} \mathrm{O}} \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{k}_{1} \times \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=1.75 \times 10^{-5} \times\left[\frac{1-\alpha}{\alpha}\right]} \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{k}_{2} \times \frac{[\mathrm{HPr}]}{\left[\mathrm{Pr}^{-}\right]}=1.3 \times 10^{-5} \times \frac{(1-\beta)}{\beta}} \\
& \Rightarrow\left[\frac{\alpha}{1-\alpha}\right]=\frac{1.75}{1.3} \times\left[\frac{\beta}{1-\beta}\right]
\end{aligned}
$$

35. (ABC)
(A) $\left[\mathrm{A}^{2-}\right]$ depends on $\left[\mathrm{H}^{+}\right]$.
(B) $\left\{\mathrm{pH}=1 ;\left[\mathrm{H}^{+}\right]=10^{-1}\right\} ;\left\{\mathrm{pH}=3 ;\left[\mathrm{H}^{+}\right]=10^{-3}\right\}$
(C) On dilution, there is no effect on pH of neutral buffer.
36. (12.56)
37.

(25)

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { salt }}{\text { acid }} \\
& \Rightarrow 7.4=6.7+\log \frac{\text { salt }}{\text { acid }} \Rightarrow \frac{\text { salt }}{\text { acid }}=5 \\
& \Rightarrow 5 \times 2.5 \times 10 \times 10^{-3}=5 \times \mathrm{V} \\
& \Rightarrow \text { required volume }=25 \mathrm{~mL}
\end{aligned}
$$

38. (6)
(a), (b), (e), (f), (g), (i)
39.

(5)
40. (4)
$\left[\mathrm{H}^{+}\right]_{\text {total }}=\left[\mathrm{H}^{+}\right]_{\mathrm{HCl}}=0.5 \mathrm{M}$
$\mathrm{K}_{\mathrm{a}_{1}}+\mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]^{2} \times\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
$10^{-21}=\frac{5^{2} \times 10^{-2}\left[\mathrm{~S}^{2-}\right]}{10^{-1}}$
$\left[\mathrm{S}^{2-}\right]=4 \times 10^{-22}$

MUMBAI /DELHI-NCR / PUNE / NASHIK / AKOLA/ GOA / JALGOAN/ BOKARO / AMRAVATI / DHULE

SOLUTIONS

41. (B)

Let $\left(x_{1}, y_{1}\right)$ be mid-point of any chord of the parabola

$$
y^{2}=4 a x
$$

$\therefore \quad$ its equation is $y y_{1}-2\left(x+x_{1}\right)=y_{1}^{2}-4 x_{1} \quad\left(T=S_{1}\right)$
It passes through vertex $(0,0)$.
42. (C)

Solving $x^{2}=4 y$ and $y^{2}=4 x$, we get $x=0, y=0$ and $x=4, y=4$.
$\therefore \quad \mathrm{P}$ is $(4,4)$. The $=\mathrm{n}$ of the tangents to the two parabolas at $(4,4)$ are

$$
\begin{equation*}
2 x-y-4=0 \tag{1}
\end{equation*}
$$

and $x-2 y+4=0$

$$
\begin{align*}
& m_{1}=\text { slope of }(1)=2 \tag{2}\\
& m_{2}=\text { Slope of }(2)=\frac{1}{2}
\end{align*}
$$

Since $m_{1} m_{2}=1$ i.e. $\tan \theta_{1} \tan \theta_{2}=1$
$\therefore \theta_{1}$ and θ_{2} are such that $\theta_{1}+\theta_{2}=\frac{\pi}{2}$.
i.e. $\theta_{2}=\frac{\pi}{2}-\theta_{1}$.
43. (C)

The equation of any normal to $y^{2}=4 a x$ is

$$
\begin{equation*}
y=m x-2 a m-a m^{3} \tag{1}
\end{equation*}
$$

The combined equation of the lines joining the origin (vertex) to the points of intersection of (1) and $y^{2}=4 a x$ is

$$
\begin{aligned}
& y^{2}=4 a x\left(y-\frac{m x}{-2 a m-a m^{3}}\right) \\
\text { or } & y^{2}\left(2 a m+a m^{3}\right)+4 a x y-4 a m x^{2}=0
\end{aligned}
$$

This represents a pair of \perp lines
$\therefore \quad$ co-eff. of $x^{2}+$ co-eff. of $y^{2}=0$
$\Rightarrow 2 a m+a m^{3}-4 a m=0$
$\Rightarrow m^{2}=2 \Rightarrow m=\sqrt{2}$
44. (B)
45. (C)
46. (A, B)

The coordinate of foot of perpendicular from P to directrix are
$\frac{x_{1}-0}{1}=\frac{y_{1}-2}{2}=-\left(\frac{1}{5}\right)$
$\Rightarrow M\left(\frac{-1}{5}, \frac{8}{5}\right)$
By property focus is image of M with respect to tangent P .
$\therefore \frac{h+\frac{1}{5}}{1}=\frac{k-\frac{8}{5}}{1}=-\left(\frac{-3}{5}\right)$
$h=\frac{2}{5} \& k=\frac{11}{5} \quad \therefore \mathrm{~S}\left(\frac{2}{5}, \frac{11}{5}\right)$
Now axis is $2 x-y+\lambda=0$
Put focus $\frac{4}{5}-\frac{11}{5}+\lambda=0$
$\lambda=\frac{7}{5}$
$2 x-y+\frac{7}{5}=0$
Mid pint of $\mathrm{M} \& \mathrm{~S}:\left(\frac{1}{10}, \frac{19}{10}\right)$ lies on tangent at vertex
\therefore it equation : $\mathrm{x}+2 \mathrm{y}=\mathrm{k}$
Passes through $\left(\frac{1}{10}, \frac{19}{10}\right) \Rightarrow \mathrm{k}=\frac{39}{10}$
\therefore tangent at vertex : $10 x+20 y=39$
47. (B)
48. (AB)

Let (h, k) be the circumcircle of $\triangle A B C$
Then, $h=\frac{4+3 p}{2 p} ; k=\frac{4-3 p}{2 q}$
$\Rightarrow p=\frac{4}{2 h-3} ; q=\frac{4 h-12}{k(2 h-3)}$
This (p, q) lies on $x^{2}=4 a y$
\Rightarrow Locus of (h, k) is $\frac{1}{2 a}\left(y+\frac{9}{8} a\right)=\left(x-\frac{9}{4}\right)^{2}$
49. (AC)
50. (C)
51. (B)

Solution for Que. No. 52 \& 53
52. (B)
53. (C)

Let P be $\left(t^{2}, 2 t\right)$, then equation of normal is $y+t x=2 t+t^{3}$
Therefore $S Q=\left|\frac{t\left(t^{2}+1\right)}{\sqrt{1+t^{2}}}\right|=\left|t \sqrt{1+t^{2}}\right|$
Now $S P=\left(1+t^{2}\right)$
So, $P Q=\sqrt{S P^{2}-S Q^{2}}$

$$
\begin{aligned}
& =\sqrt{\left(1+t^{2}\right)^{2}-t^{2}\left(1+t^{2}\right)} \\
& =\sqrt{\left(1+t^{2}\right)\left(1+t^{2}-t^{2}\right)} \\
& =\sqrt{1+t^{2}}
\end{aligned}
$$

Now $P Q=2$
Area of $\triangle P S Q$ is $\frac{1}{2} \times P Q \times Q S=2 \sqrt{3}$
54. (A, B)
$y=2 x-1$ meets $x^{2}=a y$ when $x^{2}=a(2 x+1)=2 a x+a$
$\Rightarrow x^{2}-2 a x-a=0$
Let x_{1}, x_{2} be the roots
$\therefore \quad x_{1}+x_{2}=2 a, x_{1} x_{2}=-a$
$\therefore\left(x_{1}-x_{2}\right)^{2}=\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}=4 a^{2}+4 a=4 a(a+1)$
Also, $\left(y_{1}-y_{2}\right)^{2}=\left[\left(2 x_{1}+1\right)-\left(2 x_{2}+2\right)\right]^{2}$

$$
=\left(2\left(x_{1}-x_{2}\right)\right)^{2}=4\left(x_{1}-x_{2}\right)^{2}=16 a(a+1)
$$

Required intercept $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

$$
=\sqrt{20 a(a+1)}=\sqrt{40} \text { (given) }
$$

$\therefore 20 a(a+1)=40$
$\Rightarrow a(a+1)=2 \Rightarrow a^{2}+a-2=0$
$\Rightarrow(a+2)(a-1)=0$
$\Rightarrow a=-2$
55. (A, B, D)
$E=y^{2}-8 x=0$
$\mathrm{a}=2$
Let $\mathrm{Q}\left(2 \mathrm{t}_{1}^{2}, 4 \mathrm{t}_{1}\right), \mathrm{Q}^{\prime}\left(2 \mathrm{t}_{2}^{2}, 4 \mathrm{t}_{2}\right)$
$\mathrm{t}_{1} \mathrm{t}_{2}=-1, \mathrm{t}_{1}+\mathrm{t}_{2}=2$
$\mathrm{t}_{1}=1+\sqrt{2}, \mathrm{t}_{2}=1-\sqrt{2}$
(A) $($ slope of PF) $($ slope of FQ) $=-1$
$\Rightarrow \angle \mathrm{PFQ}=\frac{\pi}{2}$
(B) $\left(\right.$ slope of $\left.\mathrm{PQ}^{\prime}\right)($ slope of PQ$)=-1$

$\Rightarrow \angle \mathrm{QPQ}^{\prime}=\frac{\pi}{2}$
(C) $\mathrm{PF}=4 \sqrt{2}$
(D) slope of $\mathrm{Q}^{\prime} \mathrm{F}=$ slope of FQ
$\Rightarrow \mathrm{Q}, \mathrm{F}, \mathrm{Q}^{\prime}$ are collinear
56. (5)

The power is $2 / 3$
57. (2)
58. (0.50)
$\Delta \mathrm{OPQ}=4$
$\frac{1}{2}\left\|\begin{array}{ccc}0 & 0 & 1 \\ t^{2} & t & 1 \\ -t^{2} & 0 & 1\end{array}\right\|=4$
$t=2 \quad(\because t>0)$
$\therefore m=\frac{1}{2}$

Ans. 0.50
59. (0)

For focal chord (w.r..t $y^{2}=4 a x$)
$\mathrm{x}_{1} \mathrm{x}_{2}=\mathrm{a}^{2}=\left(\frac{5}{4}\right)^{2}=\frac{25}{16}$
$y_{1} y_{2}=-4 a^{2}=-4 .\left(\frac{5}{4}\right)^{2}=-\frac{25}{4}$
$4 \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}=\frac{25}{4}-\frac{25}{4}=0$
60. (24)

Distance of focus from directrix $=2 \mathrm{a}$
$\Rightarrow \frac{4+8}{\sqrt{1^{2}}}=2 a \Rightarrow a=6$
\therefore length of latus rectum $=4 a=24$ units.

