MUMBAI/DELHI-NCR/PUNE / NASHIK/AKOLA/GOA / JALGOAN/BOKARO / AMRAVATI /DHULE

SOLUTIONS

1. (A)

As the two bodies are of same mass and dropped from same height, the final Kinetic energy is also same for both the bodies. When they hit the ground and this is converted to heat, the body with lower specific heat capacity will have higher rise in temperature
$\mathrm{Q}=\mathrm{ms} \Delta \mathrm{T}$
As copper has lower specific heat capacity, its temperature will be higher
2. (D)

Thermal capacity $=$ mass \times specific heat
Mass $=$ volume \times density
For a sphere, volume is directly proportional to its cube of radius
$\therefore \mathrm{TC} \propto \mathrm{r}^{3}$. $\rho . \mathrm{C}$
$\Rightarrow \frac{\mathrm{TC}_{1}}{\mathrm{TC}_{2}}=\frac{\mathrm{r}_{1}^{3} \cdot \rho_{1} \cdot \mathrm{C}_{1}}{\mathrm{r}_{2}^{3} \cdot \rho_{2} \cdot \mathrm{C}_{2}}$
$\frac{\mathrm{TC}_{1}}{\mathrm{TC}_{2}}=\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{2}{3}\right) \cdot\left(\frac{3}{4}\right)$
$\frac{\mathrm{TC}_{1}}{\mathrm{TC}_{2}}=\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{2}{3}\right) \cdot\left(\frac{3}{4}\right)$
$\frac{\mathrm{TC}_{1}}{\mathrm{TC}_{2}}=\frac{1}{16}$
3. (C)

Loss in temperature of one liquid is equal to the gain in temperature of another liquid.
$\mathrm{m}_{1} \cdot \mathrm{c}_{1} \cdot \Delta \mathrm{~T}_{1}=\mathrm{m}_{2} \cdot \mathrm{c}_{2} \cdot \Delta \mathrm{~T}_{2}$
Given the masses are same
$c_{1} \cdot(30-26)=c_{2} \cdot(26-20)$
$\frac{c_{1}}{c_{2}}=\frac{6}{4}=3 / 2$
4. (A)

Density of water is maximum at $4^{\circ} \mathrm{C}$, this is because of anomalous expansion of water.
Let volume of the sphere be V and ρ be its density, then buoyant force,

$$
\begin{array}{ll}
& \mathrm{F}=\mathrm{V} \rho \mathrm{G} \\
\Rightarrow & (\mathrm{~g}=\text { acceleration due to gravity }) \\
\mathrm{F} \propto \rho & (\because \mathrm{~V} \text { and } \mathrm{g} \text { are almost constant }) \\
\Rightarrow & \frac{\mathrm{F}_{4^{\circ} \mathrm{C}}}{\mathrm{~F}_{0^{\circ} \mathrm{C}}}=\frac{\rho_{4^{\circ} \mathrm{C}}}{\rho_{0^{\circ} \mathrm{C}}}>1
\end{array} \quad\left(\because \rho_{4^{\circ} \mathrm{C}}>\rho_{0^{\circ} \mathrm{C}}\right) .
$$

$\Rightarrow \mathrm{F}_{4^{\circ} \mathrm{C}}>\mathrm{F}_{0^{\circ} \mathrm{C}}$
Hence, buoyancy will be less in water at $0^{\circ} \mathrm{C}$ than that in water at $4^{\circ} \mathrm{C}$.
5. (C)

The scale is calibrated at $20^{\circ} \mathrm{C}$
At $40^{\circ} \mathrm{C}$, the measuring gaps will be more. So, it will measure lesser than actual.
Using, $l_{2}=l_{1}(1+\alpha \mathrm{dt})$ where $\alpha=10^{-5}$, $\mathrm{dt}=$
20 and $l_{1}=5$, we get $l_{2}=5.001 \mathrm{~m}$
6. (B)

When length of the liquid column remains constant, then the level of liquid moves down with respect to the container, thus γ must be less than 3α.
Now, we can write $\mathrm{V}=\mathrm{V}_{0}(1+\gamma \Delta \mathrm{T})$
Since, $\mathrm{V}=\mathrm{A} l_{0}=\left[\mathrm{A}_{0}(1+2 \alpha \Delta \mathrm{~T})\right] l_{0}=\mathrm{V}_{0}(1+2 \alpha \Delta \mathrm{~T})$
Hence, $\mathrm{V}_{0}(1+\gamma \Delta \mathrm{T})=\mathrm{V}_{0}(1+2 \alpha \Delta \mathrm{~T}) \Rightarrow \gamma=2 \alpha$.
7. (C)

Since in the region $A B$, temperature is constant, at this temperature, phase of the material changes from solid to liquid and $\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)$ heat will be absorbed by the material. This heat is known as the heat of melting of the solid.
Similarly in the region CD, temperature is constant. Therefore at this temperature, phase of the material changes from liquid to gas and $\left(\mathrm{H}_{4}-\mathrm{H}_{3}\right)$ heat will be absorbed by the material. This heat is known as the heat of vaporisation of the liquid.
8. (C)

Energy $=\frac{1}{2} \mathrm{mv}^{2}=\mathrm{mc} \Delta \theta$
$\Rightarrow \Delta \theta \propto v^{2}$
Temperature does not depend upon the mass of the balls.
$\therefore \frac{\mathrm{mL}}{\mathrm{t}}=\mathrm{P}$
or $\mathrm{L}=\frac{\mathrm{Pt}}{\mathrm{m}}$
9. (B)
$\Delta \mathrm{L}=\mathrm{L}_{0} \alpha \Delta \theta$
$\operatorname{Rod} A: 0.075=20 \times \alpha_{\mathrm{A}} \times 100 \Rightarrow \alpha_{\mathrm{A}}=\frac{75}{2} \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\operatorname{Rod} B: 0.045=20 \times \alpha_{B} \times 100 \Rightarrow \alpha_{B}=\frac{45}{2} \times 10^{-6} /{ }^{\circ} \mathrm{C}$

For composite rod : Taking $x \mathrm{~cm}$ of A and $(20-x) \mathrm{cm}$ of B , we have
$0.060=x \alpha_{\mathrm{A}} \times 100+(20-x) \alpha_{\mathrm{B}} \times 100$

$$
=x\left[\frac{75}{2} \times 10^{-6} \times 100+(20-x) \times \frac{45}{2} \times 10^{-6} \times 100\right]
$$

On solving, we get $x=10 \mathrm{~cm}$
10. (D)

Coefficient of volume expansion

$$
\gamma=\frac{\Delta \rho}{\rho \Delta T}=\frac{\left(\rho_{1}-\rho_{2}\right)}{\rho(\Delta \theta)}=\frac{(10-9.7)}{10 \times(100-0)}=3 \times 10^{-4}
$$

Hence, coefficient of linear expansion

$$
\alpha=\frac{\gamma}{3}=10^{-4} /{ }^{\circ} \mathrm{C}
$$

11. (D)

Since tension in the two rods will be same,

$$
\mathrm{A}_{1} \mathrm{Y}_{1} \alpha_{1} \Delta \theta=\mathrm{A}_{2} \mathrm{Y}_{2} \alpha_{2} \Delta \theta
$$

$$
\mathrm{A}_{1} \mathrm{Y}_{1} \alpha_{1}=\mathrm{A}_{2} \mathrm{Y}_{2} \alpha_{2}
$$

12. (A)

Let m gram of steam get condensed into water (by heat loss).
This happens in following two steps:
Let m gram of steam get condensed into water (by heat loss).
This happens in following two steps:

Water at $90^{\circ} \mathrm{C}$

Heat gained by water $\left(20^{\circ} \mathrm{C}\right)$ to raise its temperature upto $90^{\circ}=22 \times 1 \times(90-20)$
Hence, in equilibrium, Heat lost = heat gain
$\Rightarrow \mathrm{m} \times 540+\mathrm{m} \times 1 \times(100-90)=22 \times 1 \times(90-20)$
$\Rightarrow \mathrm{m}=2.8 \mathrm{~g}$
Net mass of the water present in the mixture $=22+2.8=24.8 \mathrm{~g}$
13. (C)

Efficiency $=\frac{0.54 \times 746}{500}=0.80$ or 80%
($0.5 \mathrm{~kW}=500 \mathrm{~W}$ and $0.54 \mathrm{hp}=0.54 \times 746 \mathrm{~W}$)
$\therefore 80 \%$ of the electrical energy is converted to mechanical energy and the rest 20% is converted to heat energy.
$\therefore \quad \frac{20}{100} \times 500=100 \mathrm{~W}$ of power is converted to heat
$\therefore \quad$ Heat produced in $1 \mathrm{~h}($ or 3600 s$)=100 \times 3600=36 \times 10^{4} \mathrm{~J}$

$$
=\frac{36 \times 10^{4}}{4.18} \mathrm{cal}=8.6 \times 10^{4} \mathrm{cal}
$$

14. (D)

Since at 20 degree temperature steel tape measures correct measurement of wood. Now at 0 degree length is 25 cm therefore, when temperature is shifted the scale reading 25 cm will increase and therefore the length which is 25 cm at 0 degree will be less than 25 cm at 20 degree.
15. (C)

Heat given by water, $\mathrm{Q}_{1}=10 \times 10=100 \mathrm{cal}$
Heat taken by ice to melt, $\mathrm{Q}_{2}=10 \times 0.5 \times[0-(-20)]+10 \times 8=900 \mathrm{cal}$
As $\mathrm{Q}_{1}<\mathrm{Q}_{2}$, so ice will not completely melt and final temperature $=0^{\circ} \mathrm{C}$.
As heat given by water in cooling up to $0^{\circ} \mathrm{C}$ is only just sufficient to increase the temperature of ice from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.
Hence mixture in equilibrium will consist of 10 g ice and 10 g water at $0^{\circ} \mathrm{C}$.
16. (C)

From given curve, Melting point for $\mathrm{A}=60^{\circ} \mathrm{C}$ and melting point for $\mathrm{B}=20^{\circ} \mathrm{C}$
Time taken by A for fusion $=(6-2)=4$ minutes
Time taken by B for fusion $=(6.5-4)=2.5$ minutes

$$
\therefore \quad \frac{\mathrm{H}_{\mathrm{A}}}{\mathrm{H}_{\mathrm{B}}}=\frac{6 \times 4 \times 60}{6 \times 2.5 \times 60}=\frac{8}{5}
$$

17. (D)

It is clear that at desired temperature, $\mathrm{T}^{\circ} \mathrm{C}$, the densities of the wood and benzene must be equal for the wood to just sink.
i.e., $\rho_{w}(T)=\rho_{B}(T)$

If m is the mass of wood (which is assumed to be constant) then, if $\left(V_{0}\right)_{w}$ and $\left(V_{0}\right)_{B}$ are the respective volumes at $0^{\circ} \mathrm{C}$ of mass m of wood and benzene,

$$
\begin{aligned}
& \left(\rho_{0}\right)_{w}\left(V_{0}\right)_{w}=\left(\rho_{0}\right)_{B}\left(V_{0}\right)_{B}=m \\
& \left(\rho_{0}\right)_{w}=880 \mathrm{~kg} / \mathrm{m}^{3} \text { and }\left(\rho_{0}\right)_{B}=900 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Hence, $\left(\mathrm{V}_{0}\right)_{\mathrm{w}}=\frac{\mathrm{m}}{880}\left(\mathrm{~m}^{3}\right)$
End, $\left(\mathrm{V}_{0}\right)_{\mathrm{B}}=\frac{\mathrm{m}}{900}\left(\mathrm{~m}^{3}\right)$
We then have, $\left(\mathrm{V}_{\mathrm{T}}\right)_{\mathrm{w}}=\left(\mathrm{V}_{0}\right)_{\mathrm{w}}\left(1+1.2 \times 10^{-3} \mathrm{~T}\right)$

$$
\left(\mathrm{V}_{\mathrm{T}}\right)_{\mathrm{B}}=\left(\mathrm{V}_{0}\right)_{\mathrm{B}}\left(1+1.5 \times 10^{-3} \mathrm{~T}\right)
$$

Thus $\frac{\left(\mathrm{V}_{\mathrm{T}}\right)_{\mathrm{W}}}{\left(\mathrm{V}_{\mathrm{T}}\right)_{\mathrm{B}}}=\frac{\left(\rho_{\mathrm{B}}\right)_{\mathrm{T}}}{\left(\rho_{\mathrm{W}}\right)_{\mathrm{T}}}=1=\frac{\left(\mathrm{V}_{0}\right)_{\mathrm{W}} 1+1.2 \times 10^{-3} \mathrm{~T}}{\left(\mathrm{~V}_{0}\right)_{\mathrm{B}} 1+1.5 \times 10^{-3} \mathrm{~T}}$
Solving for T , we have $\mathrm{T}=83.2^{\circ} \mathrm{C}$.
18. (A)
$\mathrm{m}_{1} \times 1 \times(50-30)=\mathrm{m}_{1} \times 1 \times(80-50)$
$\mathrm{m}_{1} \times 20=\mathrm{m}_{1} \times 30$ or $\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{3}{2}$
Mass of water from tank $\mathrm{A}=\frac{3}{5} \times 40=24 \mathrm{~kg}$
Mass of water from tank $B=\frac{2}{5} \times 40=16 \mathrm{~kg}$
19. (D)
$\mathrm{V}=\mathrm{V}_{0}(1+\gamma \Delta \theta)$
\Rightarrow Change in volume, $\mathrm{V}-\mathrm{V}_{0}=\Delta \mathrm{V}=\mathrm{A} . \Delta l=\mathrm{V}_{0} \gamma \Delta \theta$
$\Rightarrow \Delta l=\frac{\mathrm{V}_{0} \gamma \Delta \theta}{\mathrm{~A}}=\frac{10^{-6} \times 18 \times 10^{-5} \times(100-\theta)}{0.004 \times 10^{-4}}$ $=45 \times 10^{-3} \mathrm{~m}=4.5 \mathrm{~cm}$
20. (C)

Heat supplied is $\mathrm{L}_{\text {fusion }}+\mathrm{Mc} \Delta \mathrm{T}+\mathrm{ML}_{\text {vap }}$
$\mathrm{Q}_{1}=10 \times 336+10 \times 4.2 \times 100+10 \times 2260$
$\mathrm{Q}_{1}=30160 \mathrm{~J}$ or 7200 cal
Heat for calorimeter
$\mathrm{Q}_{2}=10 \times 1 \times 100=1000 \mathrm{cal}$
$\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=8200 \mathrm{cal}$
21. (150)

Since specific heat of lead is given in Joules, hence use $W=Q$ instead of $W=J Q$.
So, $\frac{1}{2} \times\left(\frac{1}{2} \mathrm{mv}^{2}\right)=$ m.c. $\Delta \theta \Rightarrow \delta \theta=\frac{\mathrm{v}^{2}}{4 \mathrm{c}}=\frac{(300)^{2}}{4 \times 150}=150{ }^{\circ} \mathrm{C}$
22. (5)
$\Delta \mathrm{L}=\Delta \mathrm{L} \Delta \mathrm{T}$
$\Delta(2 \mathrm{~L})=2 \alpha(2 \mathrm{~L}) \Delta \mathrm{T}$
$\Delta(3 \mathrm{~L})=\alpha_{\text {composite }}(3 \mathrm{~L}) \Delta \mathrm{T}$
$\therefore \Delta \mathrm{L} \Delta \mathrm{T}+2 \alpha(2 \mathrm{~L}) \Delta \mathrm{T}=\alpha_{\text {composite }}(3 \mathrm{~L}) \Delta \mathrm{T}$
$\Rightarrow \alpha_{\text {composite }}=\frac{5}{3} \alpha$
Comparing with $\frac{5 \mathrm{x}}{3}, \mathrm{x}=5$
23. (2)

Area expansion $=2 \times$ linear expansion
Therefore surface area will increase by 2%.
24. (8)

Let power lost to surrounding be Q .

$$
16-\mathrm{Q}=\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right) \mathrm{S}(10)
$$

and $32-\mathrm{Q}=3\left[\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right) \mathrm{S}(10)\right]$
$\Rightarrow \frac{32-\mathrm{Q}}{16-\mathrm{Q}}=3 \Rightarrow \mathrm{Q}=8 \mathrm{~W}$
25. (3)

Energy released by water from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$

$$
=2500 \times 1 \times 25=62500 \mathrm{cal}
$$

Energy to bring ice to $0^{\circ} \mathrm{C}=2000 \times \frac{1}{2} \times 15=15000 \mathrm{cal} 2$
Energy used to melt ice of m gram $=\mathrm{m} 80 \mathrm{cal}$
$\therefore \quad$ Ice melt $\mathrm{m}=\left(\frac{62500-15000}{80}\right)=593.75 \mathrm{~g}$
So, mass of water $=(2500+593.75) \mathrm{g}=3093.75 \mathrm{~g}=3 \mathrm{~kg}$
26. (6)

Energy with 5 kg of $\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ to become water at $0^{\circ} \mathrm{C}$,

$$
\mathrm{E}_{1}=5000 \times 1 \times 20=1000000 \mathrm{cal}
$$

Energy to raise the temperature of 2 kg ice form $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$,

$$
\mathrm{E}_{2}=2000 \times 0.5 \times 20=20000 \mathrm{cal}
$$

$\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right)=8000 \mathrm{cal}$ is available to melt ice at $0^{\circ} \mathrm{C}$.
So only 1000 g or 1 kg of ice would have melt.
So, the amount of water available $1+5=6 \mathrm{~kg}$
27. (4)
$(\mathrm{OR})^{2}=(\mathrm{PR})^{2}-(\mathrm{PO})^{2}=l^{2}-\left(\frac{l}{2}\right)^{2}$
$\Rightarrow(\mathrm{OR})^{2}=\left[l\left(1+\alpha_{2} \mathrm{t}\right)\right]^{2}-\left[\frac{l}{2}\left(1+\alpha_{1} \mathrm{t}\right)\right]^{2}$
$\Rightarrow l^{2}-\frac{l^{2}}{4}=l^{2}\left(1+\alpha_{2}^{2} \mathrm{t}^{2}+2 \alpha_{2} \mathrm{t}\right)-\frac{l^{2}}{4}\left(1+\alpha_{1}^{2} \mathrm{t}^{2}+2 \alpha_{1} \mathrm{t}\right)$
Neglecing $\alpha_{2}^{2} \mathrm{t}^{2}$ and $\alpha_{1}^{2} \mathrm{t}^{2}$, we get

$$
0=l^{2}\left(\alpha_{2} \mathrm{t}\right)-\frac{l^{2}}{4}\left(2 \alpha_{1} \mathrm{t}\right) \Rightarrow 2 \alpha_{2} \Rightarrow \alpha_{1}=4 \alpha_{2}
$$

28. (8)

Suppose m gram ice melts, then heat required for its melting
$=\mathrm{mL}=\mathrm{m} \times 80 \mathrm{cal}$
Heat available with stem for being condensed and then brought to $0^{\circ} \mathrm{C}$
$=1 \times 540+1 \times 1 \times(100-0)=640 \mathrm{cal}$
Now, heat lost $=$ heat taken
$\Rightarrow 604=\mathrm{m} \times 80 \Rightarrow \mathrm{~m}=8 \mathrm{~g}$
29. (3)

$$
\gamma_{\text {mercury }}=20 \alpha_{\text {glass }}=\frac{20}{3} \gamma_{\text {glass }}
$$

Let the volume of mercury is $\mathrm{V}_{\text {mercury }}$
Since the volume above mercury remains same,
$\gamma_{\text {mercury }} V_{\text {mercury }}=\gamma_{\text {glass }} V_{\text {glass }}$
$\Rightarrow \frac{20}{3} \gamma_{\text {glass }} \mathrm{V}_{\text {mercury }}=\gamma_{\text {glass }} \mathrm{V}$
$\Rightarrow \mathrm{V}_{\text {mercury }}=\frac{3 \mathrm{~V}}{20}$
$\Rightarrow \mathrm{x}=3$
30. (0.02)
$\mathrm{V}=\mathrm{V}_{0}(1+\gamma \Delta \mathrm{T})$
$\mathrm{V}=\mathrm{V}_{0}+\mathrm{V}_{0} \gamma \Delta \mathrm{~T}$
$\frac{\mathrm{V}-\mathrm{V}_{0}}{\mathrm{~V}_{0}}=\gamma \Delta \mathrm{T}$
Now since mass M is constant
$\frac{\frac{M}{\rho}-\frac{M}{\rho_{0}}}{\frac{M}{\rho_{0}}}=\gamma \Delta T$

MUMBAI / DELHI-NCR/PUNE / NASHIK / AKOLA/ GOA / JALGOAN / BOKARO / AMRAVATI / DHULE

SOLUTIONS

31. (C)
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{w}}} \Rightarrow \mathrm{P}^{\mathrm{H}}=-\log \left(2.5 \times 10^{-14}\right)^{1 / 2}=6.8$
32. (C)

No. of $\mathrm{H}_{3} \mathrm{O}^{+}$ions $=\frac{1 \times 10^{-12}}{1000} \times 6.02 \times 10^{23}=6.02 \times 10^{8}$
33. (D)

On neglecting the contribution of water, $\left[\mathrm{H}^{+}\right]=10^{-6} \mathrm{M}$
When contribution of water is considered ,

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \left(\mathrm{x}+10^{-6}\right) \mathrm{M} \quad \mathrm{xM}
\end{aligned}
$$

Equilibrium
Now, $\left(x+10^{-6}\right) \cdot x=10^{-14} \Rightarrow x=9.9 \times 10^{-9}$
$\therefore\left[\mathrm{H}^{+}\right]_{2}=\left(\mathrm{x}+10^{-6}\right) \mathrm{M}=1.0099 \times 10^{-6} \mathrm{M}$
Now \% error in $\left[\mathrm{H}^{+}\right]=\frac{\left[\mathrm{H}^{+}\right]_{2}-\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]_{2}}=\left[\mathrm{H}^{+}\right] \times 100 \%$
$=0.98 \%$
34. (A)

Smaller P_{Ka}, stronger acid, greater $\left[\mathrm{H}^{+}\right]$
35. (C)

$$
\begin{array}{lcc}
\mathrm{CH}_{3} \mathrm{COOH} & \mathrm{CH}_{3} \mathrm{COOH}^{-}+\mathrm{H}^{+} \\
1 \mathrm{M} & 0 & 0.1 \mathrm{M} \\
1-\mathrm{x} & \mathrm{x} & 0.1+\mathrm{x} \\
\simeq 1 \mathrm{M} & & \simeq 0.1 \mathrm{M}
\end{array}
$$

Now, $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \Rightarrow 2 \times 10^{-5}=\frac{\mathrm{x} \times 0.1}{1}$
36. (D)
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
low $\mathrm{pH} \rightleftharpoons \mathrm{High}\left[\mathrm{H}^{+}\right]$
\Rightarrow Equilibrium in backward direction
High $\mathrm{pH} \Rightarrow \operatorname{low}\left[\mathrm{H}^{+}\right]$
\Rightarrow Equilibrium in forward direction
37. (D)

$$
\mathrm{pK}_{\mathrm{a}}=5 \Rightarrow \mathrm{pH} \text { range }=4 \text { to } 6
$$

38. (A)

Sodium acetate is basic in nature.
39. (B)

$$
\begin{aligned}
& \quad \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \\
& \\
& 0.1 \text { mole } \quad 0.08 \text { mole } \\
& \text { Final } 0.02 \text { mole } \quad 0 \quad 0.08 \text { mole } \\
& \\
& \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]_{0}}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]_{0}} \\
& =-\log \left(5 \times 10^{-4}\right)+\log \frac{0.08}{0.02} \\
& \therefore
\end{aligned}
$$

40. (A)

Stronger the acid, smaller is pH
41. (C)
$\mathrm{CH}_{3} \mathrm{COONa}=$ Basic, $\mathrm{CH}_{3} \mathrm{COOH}=$ Weak acid,
$\mathrm{CH}_{3} \mathrm{COONH}_{4}=$ Neutral, $\mathrm{NaOH}=$ strong base, $\mathrm{HCl}=$ strong acid
42. (D)
$\left[\mathrm{H}^{+}\right]=\frac{75 \times \frac{1}{5}-25 \times \frac{1}{5}}{100}=0.1 ; \mathrm{pH}=1$
43. (B)

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} ; \mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
& \mathrm{c}_{1}+\mathrm{x} \quad \mathrm{x} \quad \mathrm{c}_{1} \\
& \mathrm{c}_{1} \quad \mathrm{c}_{1} \\
& \mathrm{c}_{1}=\mathrm{x} \text { (given) } \\
& \Rightarrow 10^{-14}=2 \mathrm{c}_{1}^{2} \\
& \Rightarrow \sqrt{50} \times 10^{-8}=\mathrm{c}_{1}
\end{aligned}
$$

44. (D)
$\left[\mathrm{H}^{+}\right]_{\text {new }}=\frac{10^{-6}}{100}=10^{-8}$; So, now contribution of H^{+}from $\mathrm{H}_{2} \mathrm{O}$ should also be considered. $\mathrm{Ph}=6.95$.
45. (B)
$\mathrm{H}_{3} \mathrm{~B} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~B}^{-}$
$\mathrm{H}_{2} \mathrm{~B}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HB}^{2-}$
$\mathrm{HB}^{2-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{B}^{3-}$
$\mathrm{HB}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{~B}^{-}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b}}\left(\mathrm{HB}^{2-}\right)=\frac{\left[\mathrm{H}_{2} \mathrm{~B}^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HB}^{2-}\right]}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{2}}$
46. (C)
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}^{+}\right]_{\mathrm{HCl}}+\left[\mathrm{H}^{+}\right]_{\mathrm{AcOH}}$;
$1.69 \times 10^{-5}=\frac{0.01 \times 0.01 \alpha}{0.01}$
$\Rightarrow \alpha=1.69 \times 10^{-3}$
47. (B)

$$
\underset{\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)}{\mathrm{pH}_{2}}=\frac{2.2+7.2}{2} ; \underset{\left(\mathrm{Na}_{2} \mathrm{PPO}_{4}\right)}{\mathrm{pH}_{1}}=\frac{7.2+12.0}{2}
$$

48. (B)
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{c} \alpha^{2}}{1-\alpha}=\frac{0.2 \times 0.09}{0.7}$
49. (D)
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pk}_{\mathrm{a}}-\log \mathrm{c}\right]$
50. (A)

Order of basic strength :
$\mathrm{Ba}(\mathrm{OH})_{2}>\mathrm{NaOH}>\mathrm{NH}_{4} \mathrm{OH}$
51. (13)

As all have 0.1 M concentration, $[\mathrm{KOH}]_{\text {final }}=0.1 \mathrm{M}$
$\therefore \mathrm{pOH}=-\log (0.1)=1.0$ and $\mathrm{pH}=13$
52. (6)
$\mathrm{n}_{\mathrm{OH}^{-}}$taken $=\frac{100 \times 0.5}{1000}=0.05$
$\mathrm{n}_{\mathrm{H}^{+}}$taken $=\frac{250 \times 0.2}{1000}=0.05$
Hence, resulting solution is neutral $\mathrm{pH}=-\log \left(10^{-6}\right)=6.0$
53. (4)
$\mathrm{pH}_{\mathrm{CH}_{3} \mathrm{COOH}}=\mathrm{pOH}_{\mathrm{NH}_{3}}=3.2 \Rightarrow \mathrm{pH}_{\mathrm{NH}_{3}}=14-3.2=10.8$
$2.7 x=10.8$
$x=4$
54. (665)
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}}=\sqrt{2 \times 10^{-12} \times 0.02}=2 \times 10^{-7} \mathrm{M}$
As $\left[\mathrm{H}^{+}\right]$is very small, contribution of H^{+}from water must be considered.

$$
\mathrm{HA} \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{A}^{-}
$$

Equilibrium

Equilibrium

$$
\begin{array}{lc}
(0.02-\mathrm{x}) \mathrm{M} & (\mathrm{x}+\mathrm{y}) \mathrm{M}
\end{array} \mathrm{xM} \mathrm{x}=\mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Now, $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\Rightarrow 2 \times 10^{-12}=\frac{(\mathrm{x}+\mathrm{y}) \cdot \mathrm{x}}{(0.02-\mathrm{x})} \approx \frac{(\mathrm{x}+\mathrm{y}) \cdot \mathrm{x}}{0.02}$
Or. $4 \times 10^{-14}=(x+y) \cdot x$
And $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \Rightarrow 10^{-14}=(\mathrm{x}+\mathrm{y}) \cdot \mathrm{y}$
From (1) $+(2),(x+y)=\sqrt{5 \times 10^{-14}} \mathrm{M}=\left[\mathrm{H}^{+}\right]$
$\therefore \mathrm{P}^{\mathrm{H}}=-\log \left(5 \times 10^{-14}\right)^{1 / 2}=6.65=\mathrm{x}$
$100 x=665$
55. (99)
$\mathrm{P}^{\mathrm{H}}=\mathrm{P}^{\mathrm{K}_{\mathrm{a}}}+\log \frac{\left[\mathrm{CN}^{-}\right]_{0}}{[\mathrm{HCN}]_{0}}$
$=-\log \left(2.5 \times 10^{-10}\right)+\log \frac{80 \times 0.4 / 100}{20 \times 0.8 / 100}$
$=9.9=x$
$10 \mathrm{x}=99$
56. (65)
$\mathrm{pH}=7+\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)=7+\frac{1}{2}(3.8-4.8)=6.5=\mathrm{x}$
$10 x=65$
57. (1150)
pK_{b} of $\mathrm{CN}^{-}=4.70 \Rightarrow \mathrm{pK}_{\mathrm{a}}$ of $\mathrm{HCN}=9.30$
Now, $\mathrm{pH}=7+\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}+\log \mathrm{C}\right)$
$=7+\frac{1}{2}(9.30+\log 0.5)=11.5=\mathrm{x}$
$100 x=1150$
58. (2)

Equal volumes of both with consume and hence,
$\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=\frac{0.01}{2}=0.005$
Now, $\mathrm{pH}=7+\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}+\log \mathrm{C}\right)$
$=7+\frac{1}{2}(4.7+\log 0.005)=8.2=4.1 \mathrm{x}$
$x=2$
59.
(9)
$\underset{0.1-x}{\mathrm{~A}^{-}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{x}{\mathrm{HA}}+\mathrm{OH}_{x}^{-}$
$\frac{x^{2}}{0.1}=10^{-9}$
$\Rightarrow 1 x=10^{-5}$ or $\mathrm{pOH}=5$
60. (5)
$14-8=\mathrm{pK}_{\mathrm{b}}+\log \frac{2.5}{2.5} \Rightarrow \mathrm{pK}_{\mathrm{b}}=6$
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{b}}-\log \mathrm{c}\right]=\frac{1}{2}[14-6-\log 0.01]$

MUMBAI / DELHI-NCR/PUNE / NASHIK / AKOLA/GOA / JALGOAN / BOKARO / AMRAVATI / DHULE
IIT - JEE: 2023
TW TEST (MAIN)
DATE: 11/03/23

SOLUTIONS

61. (D)
62. (B)
63. (D)
64. (D)
65. (C)
66. (C)
67. (D)
68. (C)
69. (C)
70. (B)
71. (C)
72. (B)
73. (C)
74. (D)
75. (A)
76. (C)
77. (D)
78. (D)
79. (D)
80. (A)
81. (3)

For normal $C=-2 a m-a m^{3}$
82. (90)
$\therefore m_{1} m_{2}=-1$
83. (3)

Focus is $(1,0)$ third vertex is $(-1,0)$.
Hence, directrix is $x+3=0$.
84. (8)

By $\mathrm{t}_{1}=-\mathrm{t}-\frac{2}{\mathrm{t}}=-\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right)$
Diff. w.r.t. x
$\frac{\mathrm{dt}_{1}}{\mathrm{dt}}=\frac{2}{\mathrm{t}^{2}}-1=0$
$\mathrm{t}= \pm \sqrt{2}$
$\mathrm{t}_{1}^{2}=\frac{4}{\mathrm{t}^{2}}+\mathrm{t}^{2}+4=8$
\therefore min. value of $\mathrm{t}_{1}^{2}=8$
85. (1)

Given line and parabola are
$y=-x-1$ and $y^{2}=4 k x$
Condition for tangency
$\mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}} \Rightarrow-1=\frac{\mathrm{k}}{-1}$
$\therefore \mathrm{k}=1$
86. (1)

Any normal to the parabola $y^{2}=4 x$ is
$\mathrm{y}=\mathrm{mx}-2 \mathrm{~m}-\mathrm{m}^{3}$
this passes thro' $(1,0)$
$\therefore 0=\mathrm{m}-2 \mathrm{~m}-\mathrm{m}^{3}=0-\mathrm{m}-\mathrm{m}^{3}=0$
$\Rightarrow-m\left(1+m^{2}\right)=0$
$\Rightarrow \mathrm{m}-0 \quad\left[\because \mathrm{~m}^{2}+1 \neq 0\right]$
\therefore Normal is $\mathrm{y}=0$
\therefore there is only one normal
87. (6)

Focal distance of a point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ is $\mathrm{x}_{1}+\mathrm{a}=\mathrm{x}_{1}+3[\because 4 \mathrm{a}=12 \Rightarrow \mathrm{a}=3]$
But $\mathrm{y}_{1}^{2}=12 \mathrm{x}_{1} \therefore(6)^{2}=12 \mathrm{x}_{1} \Rightarrow \mathrm{x}_{1}=3$
\therefore focal distance $=3+3=6$
88. (2)

Latus Rectum $=$ Twice the distance of the focus from the directrix.
89.
(20)

Since $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are points on the parabola $\mathrm{y}^{2}=8 \mathrm{x}$

$\mathrm{y}_{1}^{2}=8 \mathrm{x}_{1}$
$y_{2}^{2}=8 x_{2}$
Also $\frac{1}{\mathrm{FP}}+\frac{1}{\mathrm{FQ}}=\frac{2}{\ell}=\frac{2}{4}=\frac{1}{2} \quad\left[\ell=\right.$ semi-latus rectum $\left.==\frac{1}{2}(8)=4\right]$
$\therefore \frac{1}{\mathrm{x}_{1}+2}+\frac{1}{\mathrm{x}_{2}+1}=\frac{1}{2}$
$\Rightarrow\left(\mathrm{x}_{2}+2+\mathrm{x}_{1}\right)=\mathrm{x}_{1} \mathrm{x}_{2}+2\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+4$
$\Rightarrow 8=\mathrm{x}_{1} \mathrm{x}_{2}+4 \Rightarrow \mathrm{x}_{1} \mathrm{x}_{2}=8-4=4$
$y_{1}^{2} y_{2}^{2}=64 x_{1} x_{2}=64(4)=256$
$\Rightarrow \mathrm{y}_{1} \mathrm{y}_{2}=16$
$\therefore \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}=4+16=20$
90. (2)
$y=x+a$ meets $y^{2}=4(x+1)$ if
$(x+a)^{2}=4(x+1)=4 x+4$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{ax}+\mathrm{a}^{2}-4 \mathrm{x}-4=0$
$\Rightarrow x^{2}+(2 a-4) x+4 a^{2}-4$
For equal roots $(2 a-4)^{2}=4\left(a^{2}-4\right)$
$\Rightarrow 4 x^{2}-16 a+16=4 a^{2}-16$
$\Rightarrow 16 \mathrm{a}=32 \Rightarrow \mathrm{a}=2$

