X- PHYSICS - 4. CIRCULAR M OTION SOLUTIONS

LEVEL 1:

1. (a) Angular displacement is rotation of position vector through a small angle.
2. (c) $f=3000$ r.p. $m=\frac{3000}{60}=50 \mathrm{~Hz}$
$\omega=2 \pi f=100 \pi \mathrm{rad} / \mathrm{s}$
$\theta=\omega t=100 \pi \mathrm{rad}$
3. (a) Circumference of the wheel x rotations =distance covered

Thus, $\pi d \times 2000=9500$
$\mathrm{d}=1.5 \mathrm{~m}$
4. (a) $\mathrm{a}=\mathrm{r} \alpha ; \mathrm{v}=\mathrm{r} \omega ; \mathrm{a}=\frac{v \alpha}{\omega}$
5. (c) $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{60}=\frac{\pi}{30} \mathrm{rad} / \mathrm{s}$
6. (b) $a=r \alpha ; a=r \omega^{2} ; \alpha=\omega^{2}$ i.e. constant
7. (b) $\mathrm{C}=2 \pi \mathrm{r} ; \mathrm{r}=\frac{\mathrm{C}}{2 \pi} ; \omega=2 \pi f$
$\mathrm{v}=\mathrm{r} \omega=\frac{\mathrm{C}}{2 \pi} 2 \pi f=\mathrm{Cf}$
8. (a) $f=240$ r.p. $m=\frac{240}{60}=4 \mathrm{~Hz}$
$\omega=2 \pi f=8 \pi \mathrm{rad} / \mathrm{s}$
$v=r \omega=(0.6)(8 \pi)=4.8 \pi \mathrm{~m} / \mathrm{s}$
9. (c) $v=72 \mathrm{~km} / \mathrm{hr}=20 \mathrm{~m} / \mathrm{s} ; v=r \omega ; \omega_{0}=\frac{20}{0.25}=80 \mathrm{rad} / \mathrm{s}$

Using motion equation, $\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta$
Then, $0^{2}=80^{2}+2 \alpha(40 \pi)$
$\alpha=\frac{-80^{2}}{80 \pi}=\frac{-80}{\pi}=-25.48 \mathrm{rad} / \mathrm{s}^{2}$
10. (c) $f=n$ r.p. $m=\frac{n}{60} \mathrm{~Hz}$
$\omega=2 \pi f=2 \pi \frac{n}{60} \mathrm{rad} / \mathrm{s}$
$\mathrm{v}=\mathrm{r} \omega=(\pi)\left(2 \pi \frac{n}{60}\right)=2 \pi^{2} \frac{n}{60} \mathrm{~m} / \mathrm{s}$
11. (c) $\omega=\omega_{0}+\alpha t ; 36=0+\alpha(6) ; \alpha=6 \mathrm{rad} / \mathrm{s}^{2}$

Then, $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}=108 \mathrm{rad}$
12. (c) $\omega=2 \pi f=2 \pi \frac{1200}{60}=40 \pi \mathrm{rad} / \mathrm{s}$
$\omega_{0}=2 \pi f_{0}=2 \pi \frac{600}{60}=20 \pi \mathrm{rad} / \mathrm{s}$
But, $\omega=\omega_{0}+\alpha t ; \alpha=\frac{40 \pi-20 \pi}{5}=4 \pi \mathrm{rad} / \mathrm{s}^{2}$
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta ; \theta=\frac{(40 \pi)^{2}-(20 \pi)^{2}}{2(4 \pi)}=150 \pi \mathrm{rad}$
No of revolutions $=\frac{150 \pi}{2 \pi}=75$
13. (d) f=60 r.p.m $=\frac{60}{60}=1 \mathrm{~Hz}$
$\omega=2 \pi f=2 \pi \mathrm{rad} / \mathrm{s}$
$v=r \omega=(0.2)(2 \pi)=0.4 \pi \mathrm{~m} / \mathrm{s}$
14. (d) Average speed $=\frac{2 \pi r}{t}=\frac{(2)(3.14)(100)}{62.8}=10 \mathrm{~m} / \mathrm{s}$

Average velocity $=0 \mathrm{~m} / \mathrm{s}$
15. (c)

LEVEL 2:

1. (c) Tangential acceleration $=a_{t}=\mathrm{a}$

Radial acceleration $=a_{r}=\frac{v^{2}}{r}$
Resultant acceleration $=\mathrm{a}=\sqrt{a_{t}^{2}+a_{r}^{2}}=\sqrt{a^{2}+\frac{v^{4}}{r^{2}}}$
2. (d)
3. (d) Tangential acceleration $=a_{t}=2 \mathrm{~m} / \mathrm{s}^{2}$

Radial acceleration $=a_{r}=\frac{v^{2}}{r}=\frac{30^{2}}{500}=\frac{9}{5} \mathrm{~m} / \mathrm{s}^{2}$
Resultant acceleration $=\mathrm{a}=\sqrt{2^{2}+\left(\frac{9}{5}\right)^{2}}=2.69 \mathrm{~m} / \mathrm{s}^{2}$
4. (b) $\omega=\omega_{0}+\alpha t ; \alpha=\frac{15 \pi-10 \pi}{2}=2.5 \pi \mathrm{rad} / \mathrm{s}^{2}$
5. (c) $\mathrm{P}=\mathrm{mv} ; \mathrm{CPF}=\frac{m v^{2}}{r}$; Required ratio $=\frac{v}{r}$
6. (d)
7. (a) Tension in the string $=\mathrm{CPF}=m r \omega^{2}$

$$
\begin{aligned}
& 32=(2)(1)(2 \pi f)^{2} \\
& \mathrm{f}=\frac{2}{\pi} \mathrm{rps}=\frac{120}{\pi} \mathrm{rpm}=38 \mathrm{rpm}
\end{aligned}
$$

8. (b) Frictional force $=\mu m g=(0.5)(800)(10)=4000 \mathrm{~N}$

$$
\begin{aligned}
& 4000=\frac{m v^{2}}{r} ; \quad v^{2}=(4000)(40) /(800)=200 \\
& \mathrm{v}=14 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

9. (d) $\tan \theta=\frac{v^{2}}{r g}=\frac{(10)^{2}}{(80)(10)}=\frac{1}{8}$
10. (b) $\mu=\tan \theta=0.24$

SUBJECTIVE QUESTIONS:

1. (a) Work done by the centripetal force will be zero.
2. $\mathrm{S}=\mathrm{r} \theta=6.38 \times 10^{6} \times \frac{\pi}{180}=1.11 \times 10^{5} \mathrm{~m}$
3. Vertically downwards
4. $\omega=\frac{2 \pi}{T} ; \frac{\omega_{u}}{\omega_{s}}=\frac{T_{s}}{T_{u}} ; \omega_{u}=\frac{x k}{y}$
5. $\mathrm{f}=\mathrm{xr} . \mathrm{p} . \mathrm{m}=\frac{x}{60 y} \mathrm{~Hz}$
$\mathrm{T}=\frac{60 y}{x} \mathrm{~s}$
$\omega=2 \pi f=2 \pi \frac{x}{60 y}=\frac{\pi x}{30 y} \mathrm{rad} / \mathrm{s}$
6. $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{60}=\frac{\pi}{30} \mathrm{rad} / \mathrm{s}$
7. a) $\omega=\frac{2 \pi}{T} ; T=\frac{2 \pi}{\omega}=\frac{2 \pi}{40}=\frac{\pi}{20} \mathrm{~S}$
b) $v=r \omega ; r=\frac{v}{\omega}=\frac{20}{40}=0.5 \mathrm{~m}$
8. $f=400 \mathrm{r} . \mathrm{p} . \mathrm{m}=\frac{400}{60}=\frac{20}{3} \mathrm{~Hz}$
$\omega=2 \pi f=\frac{40}{3} \pi \mathrm{rad} / \mathrm{s}$
$v=r \omega=(2)\left(\frac{40}{3} \pi\right)=\frac{80}{3} \pi \mathrm{~m} / \mathrm{s}$
9. $\mathrm{C}=2 \pi \mathrm{r} ; \mathrm{r}=\frac{\mathrm{C}}{2 \pi} ; \omega=\frac{2 \pi}{T}$
$\mathrm{v}=\mathrm{r} \omega=\left(\frac{C}{2 \pi}\right)\left(\frac{2 \pi}{T}\right)=\frac{C}{T} \mathrm{~m} / \mathrm{s}$
10. $\mathrm{C}=2 \pi \mathrm{r} ; \mathrm{r}=\frac{C}{2 \pi} ; \omega=\frac{2 \pi}{T}$
$\mathrm{v}=\mathrm{r} \omega=\left(\frac{C}{2 \pi}\right)\left(\frac{2 \pi}{T}\right)=\frac{C}{T}$
$\mathrm{T}=\frac{C}{v} \mathrm{~s}$
11. $v=r \omega ; r_{c} \omega_{c}=r_{s} \omega_{s}$

Required ratio is $\frac{\omega_{c}}{\omega_{s}}=1: 2$
12. $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{60}=\frac{\pi}{30} \mathrm{rad} / \mathrm{s}$
$v=r \omega=(0.1)\left(\frac{\pi}{30}\right)=\frac{\pi}{300} \mathrm{~m} / \mathrm{s}$
13. $v=r \omega ; \omega=\frac{v}{r}=\frac{10^{8}}{1.5 \times 10^{-10}}=0.67 \times 10^{18} \mathrm{rad} / \mathrm{s}$
14. $v=r \omega$; As T is constant, ω is constant

Then, $\frac{v_{2}}{v_{1}}=\frac{r_{2}}{r_{1}}=\frac{2 R}{R} ; v_{2}=2 \mathrm{vm} / \mathrm{s}$
15. $v=r \omega=\left(2.2 \times 10^{20}\right)\left(1.2 \times 10^{-15}\right)=2.64 \times 10^{5} \mathrm{~m} / \mathrm{s}$
$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \times 3.14}{1.2 \times 10^{-15}}=5.23 \times 10^{15} \mathrm{~s}=1.66 \times 10^{8}$ years
16. $a_{r}=\frac{v^{2}}{r}=\frac{(40)^{2}}{160}=10 \mathrm{~m} / \mathrm{s}^{2}$
17. $a_{r}=\frac{v^{2}}{r}$; Acceleration increases 8 times
18. $a_{r}=r \omega^{2}$; As T is constant, ω is constant

Then, $\frac{a_{2}}{a_{1}}=\frac{r_{2}}{r_{1}}$
19. $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{(24)(3600)}=\frac{\pi}{43200} \mathrm{rad} / \mathrm{s}$

But, $a_{r}=r \omega^{2}$ and $a_{r}=r \alpha$
Then, $\alpha=\omega^{2}=5.43 \times 10^{-8} \mathrm{rad} / \mathrm{s}^{2}$
20. $\mathrm{v}=\mathrm{r} \omega$ and $a_{r}=r \alpha$

Required ratio is $1: 1$
21. $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}=0+(15)(100)=1500 \mathrm{rad}$
22. $\mathrm{f}=200 \mathrm{r} . \mathrm{p} . \mathrm{m}=\frac{200}{60}=\frac{10}{3} \mathrm{~Hz}$
$\omega_{0}=2 \pi f=\frac{20}{3} \pi \mathrm{rad} / \mathrm{s}$
$\omega=\omega_{0}+\alpha t ; \mathrm{t}=\frac{0-\frac{20}{3} \pi}{-2}=\frac{10}{3} \pi \mathrm{~s}$
23. (a)
24. (b) Electrostatic force provides the necessary CPF for circular motion of electrons around the nucleus.
25. CPF $=m r \omega^{2}$; As CPF is constant, $r \omega^{2}=$ constant i.e. $\omega \propto \frac{1}{\sqrt{r}}$

Angular velocity will become $\frac{1}{\sqrt{2}}$ times the initial value.
26. (c) Linear velocity is directed along the tangent in a circular motion.
27. (c) It remains at the neck as the water inside the bottle experiences centrifugal force.
28. Tangential direction as linear velocity is directed along the tangent in a circular motion.
29. (c) It is due to higher centrifugal force along the equator than poles.
30. (c)
31. more (four times)
32. $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{\sqrt{22}}=1.34 \mathrm{rad} / \mathrm{s}$
$C=2 \pi r ; r=\frac{34.3}{2 \pi}=5.46 \mathrm{~m}$
$v=r \omega=(5.46)(1.34)=7.32 \mathrm{~m} / \mathrm{s}$
$\tan \theta=\frac{v^{2}}{r g}=\frac{(7.32)^{2}}{(5.46)(9.8)}=1$
Thus, $\theta=45^{\circ}$
33. $\tan \theta=\frac{v^{2}}{r g}=\tan \theta=\frac{(\sqrt{r g})^{2}}{r g}=1$

Thus, $\theta=45^{\circ}$
34. Cycle will also overturn as $\tan \theta=\frac{v^{2}}{r g}$
35. $\tan \theta=\frac{v^{2}}{r g}=\frac{(10)^{2}}{(10)(10)}=1$

Thus, $\theta=45^{\circ}$
36. $\tan \theta=\frac{v^{2}}{r g}$; As $\tan \theta$ is constant, $r \propto v^{2}$

Thus, if speed is doubled, radius should be changed to four times.
37. (b) $\tan \theta=\frac{v^{2}}{r g}$ i.e. $\tan \theta \propto \mathrm{v}^{2}$

